3-state 3-symbol TM #b of G. Lafitte & C. Papazian

Comment: This TM produces 107'900 nonzeros in 4'939'345'068 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R Z1R B2R 1 right B 1 right Z 2 right B
B C1L B0L A1R 1 left C 0 left B 1 right A
C A1R C2L C1R 1 right A 2 left C 1 right C
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 C . . . 11
     3   -1 C . . .021
     4    0 A . . .121
     5    1 B . . .121
     6    0 B . . .120
     7    1 A . . .110
     8    2 B . . .1110
     9    1 C . . .1111
    10    0 C . . .1121
    11   -1 C . . .1221
    12   -2 C . . 02221
    13   -1 A . . 12221
    14    0 B . . 12221
    15    1 A . . 12121
    16    2 B . . 12121
    17    1 B . . 12120
    18    2 A . . 12110
    19    3 B . . 121110
    20    2 C . . 121111
    21    1 C . . 121121
    22    0 C . . 121221
    23   -1 C . . 122221
    24    0 C . . 112221
    25    1 C . . 111221
    26    2 C . . 111121
    27    3 C . . 111111
    28    2 C . . 111112
    29    1 C . . 111122
    30    0 C . . 111222
    31   -1 C . . 112222
    32   -2 C . . 122222
    33   -3 C . .0222222
    34   -2 A . .1222222
    35   -1 B . .1222222
    36    0 A . .1212222
    37    1 B . .1212222
    38    2 A . .1212122
    39    3 B . .1212122
    40    4 A . .12121210
    41    5 B . .121212110
    42    4 C . .121212111
    43    3 C . .121212121
    44    2 C . .121212221
    45    3 C . .121211221
    46    4 C . .121211121
    47    5 C . .121211111
    48    4 C . .121211112
    49    3 C . .121211122
    50    2 C . .121211222
    51    1 C . .121212222
    52    0 C . .121222222
    53    1 C . .121122222
    54    2 C . .121112222
    55    3 C . .121111222
    56    4 C . .121111122
    57    5 C . .121111112
    58    6 C . .1211111110
    59    7 A . .12111111110
    60    8 B . .121111111110
    61    7 C . .121111111111
    62    6 C . .121111111121
    63    5 C . .121111111221
    64    4 C . .121111112221
    65    3 C . .121111122221
    66    2 C . .121111222221
    67    1 C . .121112222221
    68    0 C . .121122222221
    69   -1 C . .121222222221
    70   -2 C . .122222222221
    71   -1 C . .112222222221
    72    0 C . .111222222221
    73    1 C . .111122222221
    74    2 C . .111112222221
    75    3 C . .111111222221
    76    4 C . .111111122221
    77    5 C . .111111112221
    78    6 C . .111111111221
    79    7 C . .111111111121
    80    8 C . .111111111111
    81    7 C . .111111111112
    82    6 C . .111111111122
    83    5 C . .111111111222
    84    4 C . .111111112222
    85    3 C . .111111122222
    86    2 C . .111111222222
    87    1 C . .111112222222
    88    0 C . .111122222222
    89   -1 C . .111222222222
    90   -2 C . .112222222222
    91   -3 C . .122222222222
    92   -4 C . 0222222222222
    93   -3 A . 1222222222222
    94   -2 B . 1222222222222
    95   -1 A . 1212222222222
    96    0 B . 1212222222222
    97    1 A . 1212122222222
    98    2 B . 1212122222222
    99    3 A . 1212121222222
   100    4 B . 1212121222222
   101    5 A . 1212121212222
   102    6 B . 1212121212222
   103    7 A . 1212121212122
   104    8 B . 1212121212122
   105    9 A . 12121212121210
   106   10 B . 121212121212110
   107    9 C . 121212121212111
   108    8 C . 121212121212121
   109    7 C . 121212121212221
   110    8 C . 121212121211221
   111    9 C . 121212121211121
   112   10 C . 121212121211111
   113    9 C . 121212121211112
   114    8 C . 121212121211122
   115    7 C . 121212121211222
   116    6 C . 121212121212222
   117    5 C . 121212121222222
   118    6 C . 121212121122222
   119    7 C . 121212121112222
   120    8 C . 121212121111222
   121    9 C . 121212121111122
   122   10 C . 121212121111112
   123   11 C . 1212121211111110
   124   12 A . 12121212111111110
   125   13 B . 121212121111111110
   126   12 C . 121212121111111111
   127   11 C . 121212121111111121
   128   10 C . 121212121111111221
   129    9 C . 121212121111112221
   130    8 C . 121212121111122221
   131    7 C . 121212121111222221
   132    6 C . 121212121112222221
   133    5 C . 121212121122222221
   134    4 C . 121212121222222221
   135    3 C . 121212122222222221
   136    4 C . 121212112222222221
   137    5 C . 121212111222222221
   138    6 C . 121212111122222221
   139    7 C . 121212111112222221
   140    8 C . 121212111111222221
   141    9 C . 121212111111122221
   142   10 C . 121212111111112221
   143   11 C . 121212111111111221
   144   12 C . 121212111111111121
   145   13 C . 121212111111111111
   146   12 C . 121212111111111112
   147   11 C . 121212111111111122
   148   10 C . 121212111111111222
   149    9 C . 121212111111112222
   150    8 C . 121212111111122222
   151    7 C . 121212111111222222
   152    6 C . 121212111112222222
   153    5 C . 121212111122222222
   154    4 C . 121212111222222222
   155    3 C . 121212112222222222
   156    2 C . 121212122222222222
   157    1 C . 121212222222222222
   158    2 C . 121211222222222222
   159    3 C . 121211122222222222
   160    4 C . 121211112222222222
   161    5 C . 121211111222222222
   162    6 C . 121211111122222222
   163    7 C . 121211111112222222
   164    8 C . 121211111111222222
   165    9 C . 121211111111122222
   166   10 C . 121211111111112222
   167   11 C . 121211111111111222
   168   12 C . 121211111111111122
   169   13 C . 121211111111111112
   170   14 C . 1212111111111111110
   171   15 A . 12121111111111111110
   172   16 B . 121211111111111111110
   173   15 C . 121211111111111111111
   174   14 C . 121211111111111111121
   175   13 C . 121211111111111111221
   176   12 C . 121211111111111112221
   177   11 C . 121211111111111122221
   178   10 C . 121211111111111222221
   179    9 C . 121211111111112222221
   180    8 C . 121211111111122222221
   181    7 C . 121211111111222222221
   182    6 C . 121211111112222222221
   183    5 C . 121211111122222222221
   184    4 C . 121211111222222222221
   185    3 C . 121211112222222222221
   186    2 C . 121211122222222222221
   187    1 C . 121211222222222222221
   188    0 C . 121212222222222222221
   189   -1 C . 121222222222222222221
   190    0 C . 121122222222222222221
   191    1 C . 121112222222222222221
   192    2 C . 121111222222222222221
   193    3 C . 121111122222222222221
   194    4 C . 121111112222222222221
   195    5 C . 121111111222222222221
   196    6 C . 121111111122222222221
   197    7 C . 121111111112222222221
   198    8 C . 121111111111222222221
   199    9 C . 121111111111122222221
   200   10 C . 121111111111112222221

After 200 steps (201 lines): state = C.
Produced     21 nonzeros.
Tape index 10, scanned [-4 .. 16].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 20 8   12 0   4
B 22 8 2 12 1 5 6
C 158 7 85 66 3 2 23
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:46 CEST 2010