Comment: This TM produces 107'900 nonzeros in 4'939'345'068 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | Z1R | B2R | 1 | right | B | 1 | right | Z | 2 | right | B |
| B | C1L | B0L | A1R | 1 | left | C | 0 | left | B | 1 | right | A |
| C | A1R | C2L | C1R | 1 | right | A | 2 | left | C | 1 | right | C |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 C . . . 11
3 -1 C . . .021
4 0 A . . .121
5 1 B . . .121
6 0 B . . .120
7 1 A . . .110
8 2 B . . .1110
9 1 C . . .1111
10 0 C . . .1121
11 -1 C . . .1221
12 -2 C . . 02221
13 -1 A . . 12221
14 0 B . . 12221
15 1 A . . 12121
16 2 B . . 12121
17 1 B . . 12120
18 2 A . . 12110
19 3 B . . 121110
20 2 C . . 121111
21 1 C . . 121121
22 0 C . . 121221
23 -1 C . . 122221
24 0 C . . 112221
25 1 C . . 111221
26 2 C . . 111121
27 3 C . . 111111
28 2 C . . 111112
29 1 C . . 111122
30 0 C . . 111222
31 -1 C . . 112222
32 -2 C . . 122222
33 -3 C . .0222222
34 -2 A . .1222222
35 -1 B . .1222222
36 0 A . .1212222
37 1 B . .1212222
38 2 A . .1212122
39 3 B . .1212122
40 4 A . .12121210
41 5 B . .121212110
42 4 C . .121212111
43 3 C . .121212121
44 2 C . .121212221
45 3 C . .121211221
46 4 C . .121211121
47 5 C . .121211111
48 4 C . .121211112
49 3 C . .121211122
50 2 C . .121211222
51 1 C . .121212222
52 0 C . .121222222
53 1 C . .121122222
54 2 C . .121112222
55 3 C . .121111222
56 4 C . .121111122
57 5 C . .121111112
58 6 C . .1211111110
59 7 A . .12111111110
60 8 B . .121111111110
61 7 C . .121111111111
62 6 C . .121111111121
63 5 C . .121111111221
64 4 C . .121111112221
65 3 C . .121111122221
66 2 C . .121111222221
67 1 C . .121112222221
68 0 C . .121122222221
69 -1 C . .121222222221
70 -2 C . .122222222221
71 -1 C . .112222222221
72 0 C . .111222222221
73 1 C . .111122222221
74 2 C . .111112222221
75 3 C . .111111222221
76 4 C . .111111122221
77 5 C . .111111112221
78 6 C . .111111111221
79 7 C . .111111111121
80 8 C . .111111111111
81 7 C . .111111111112
82 6 C . .111111111122
83 5 C . .111111111222
84 4 C . .111111112222
85 3 C . .111111122222
86 2 C . .111111222222
87 1 C . .111112222222
88 0 C . .111122222222
89 -1 C . .111222222222
90 -2 C . .112222222222
91 -3 C . .122222222222
92 -4 C . 0222222222222
93 -3 A . 1222222222222
94 -2 B . 1222222222222
95 -1 A . 1212222222222
96 0 B . 1212222222222
97 1 A . 1212122222222
98 2 B . 1212122222222
99 3 A . 1212121222222
100 4 B . 1212121222222
101 5 A . 1212121212222
102 6 B . 1212121212222
103 7 A . 1212121212122
104 8 B . 1212121212122
105 9 A . 12121212121210
106 10 B . 121212121212110
107 9 C . 121212121212111
108 8 C . 121212121212121
109 7 C . 121212121212221
110 8 C . 121212121211221
111 9 C . 121212121211121
112 10 C . 121212121211111
113 9 C . 121212121211112
114 8 C . 121212121211122
115 7 C . 121212121211222
116 6 C . 121212121212222
117 5 C . 121212121222222
118 6 C . 121212121122222
119 7 C . 121212121112222
120 8 C . 121212121111222
121 9 C . 121212121111122
122 10 C . 121212121111112
123 11 C . 1212121211111110
124 12 A . 12121212111111110
125 13 B . 121212121111111110
126 12 C . 121212121111111111
127 11 C . 121212121111111121
128 10 C . 121212121111111221
129 9 C . 121212121111112221
130 8 C . 121212121111122221
131 7 C . 121212121111222221
132 6 C . 121212121112222221
133 5 C . 121212121122222221
134 4 C . 121212121222222221
135 3 C . 121212122222222221
136 4 C . 121212112222222221
137 5 C . 121212111222222221
138 6 C . 121212111122222221
139 7 C . 121212111112222221
140 8 C . 121212111111222221
141 9 C . 121212111111122221
142 10 C . 121212111111112221
143 11 C . 121212111111111221
144 12 C . 121212111111111121
145 13 C . 121212111111111111
146 12 C . 121212111111111112
147 11 C . 121212111111111122
148 10 C . 121212111111111222
149 9 C . 121212111111112222
150 8 C . 121212111111122222
151 7 C . 121212111111222222
152 6 C . 121212111112222222
153 5 C . 121212111122222222
154 4 C . 121212111222222222
155 3 C . 121212112222222222
156 2 C . 121212122222222222
157 1 C . 121212222222222222
158 2 C . 121211222222222222
159 3 C . 121211122222222222
160 4 C . 121211112222222222
161 5 C . 121211111222222222
162 6 C . 121211111122222222
163 7 C . 121211111112222222
164 8 C . 121211111111222222
165 9 C . 121211111111122222
166 10 C . 121211111111112222
167 11 C . 121211111111111222
168 12 C . 121211111111111122
169 13 C . 121211111111111112
170 14 C . 1212111111111111110
171 15 A . 12121111111111111110
172 16 B . 121211111111111111110
173 15 C . 121211111111111111111
174 14 C . 121211111111111111121
175 13 C . 121211111111111111221
176 12 C . 121211111111111112221
177 11 C . 121211111111111122221
178 10 C . 121211111111111222221
179 9 C . 121211111111112222221
180 8 C . 121211111111122222221
181 7 C . 121211111111222222221
182 6 C . 121211111112222222221
183 5 C . 121211111122222222221
184 4 C . 121211111222222222221
185 3 C . 121211112222222222221
186 2 C . 121211122222222222221
187 1 C . 121211222222222222221
188 0 C . 121212222222222222221
189 -1 C . 121222222222222222221
190 0 C . 121122222222222222221
191 1 C . 121112222222222222221
192 2 C . 121111222222222222221
193 3 C . 121111122222222222221
194 4 C . 121111112222222222221
195 5 C . 121111111222222222221
196 6 C . 121111111122222222221
197 7 C . 121111111112222222221
198 8 C . 121111111111222222221
199 9 C . 121111111111122222221
200 10 C . 121111111111112222221
After 200 steps (201 lines): state = C.
Produced 21 nonzeros.
Tape index 10, scanned [-4 .. 16].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 20 | 8 | 12 | 0 | 4 | ||
| B | 22 | 8 | 2 | 12 | 1 | 5 | 6 |
| C | 158 | 7 | 85 | 66 | 3 | 2 | 23 |