Comment: This TM produces 107'900 nonzeros in 4'939'345'068 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | Z1R | B2R | 1 | right | B | 1 | right | Z | 2 | right | B |
| B | C1L | B0L | A1R | 1 | left | C | 0 | left | B | 1 | right | A |
| C | A1R | C2L | C1R | 1 | right | A | 2 | left | C | 1 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <C 1
3 -1 <C 2 1
4 0 1 A> 2 1
5 1 1 2 B> 1
6 0 1 2 <B
7 1 1 1 A>
8 2 13 B>
9 1 13 <C 1
+ 12 -2 <C 23 1
13 -1 1 A> 23 1
14 0 1 2 B> 2 2 1
15 1 1 2 1 A> 2 1
16 2 1 2 1 2 B> 1
17 1 1 2 1 2 <B
18 2 1 2 1 1 A>
19 3 1 2 13 B>
20 2 1 2 13 <C 1
+ 23 -1 1 2 <C 23 1
24 0 1 1 C> 23 1
+ 27 3 15 C> 1
28 2 15 <C 2
+ 33 -3 <C 26
34 -2 1 A> 26
35 -1 1 2 B> 25
36 0 1 2 1 A> 24
37 1 1 2 1 2 B> 23
38 2 1 2 1 2 1 A> 2 2
39 3 1 2 1 2 1 2 B> 2
40 4 1 2 1 2 1 2 1 A>
41 5 1 2 1 2 1 2 1 1 B>
42 4 1 2 1 2 1 2 1 1 <C 1
+ 44 2 1 2 1 2 1 2 <C 2 2 1
45 3 1 2 1 2 1 1 C> 2 2 1
+ 47 5 1 2 1 2 14 C> 1
48 4 1 2 1 2 14 <C 2
+ 52 0 1 2 1 2 <C 25
53 1 1 2 1 1 C> 25
+ 58 6 1 2 17 C>
59 7 1 2 18 A>
60 8 1 2 19 B>
61 7 1 2 19 <C 1
+ 70 -2 1 2 <C 29 1
71 -1 1 1 C> 29 1
+ 80 8 111 C> 1
81 7 111 <C 2
+ 92 -4 <C 212
93 -3 1 A> 212
94 -2 1 2 B> 211
95 -1 1 2 1 A> 210
96 0 1 2 1 2 B> 29
97 1 1 2 1 2 1 A> 28
98 2 1 2 1 2 1 2 B> 27
99 3 1 2 1 2 1 2 1 A> 26
100 4 1 2 1 2 1 2 1 2 B> 25
101 5 1 2 1 2 1 2 1 2 1 A> 24
102 6 1 2 1 2 1 2 1 2 1 2 B> 23
103 7 1 2 1 2 1 2 1 2 1 2 1 A> 2 2
104 8 1 2 1 2 1 2 1 2 1 2 1 2 B> 2
105 9 1 2 1 2 1 2 1 2 1 2 1 2 1 A>
106 10 1 2 1 2 1 2 1 2 1 2 1 2 1 1 B>
107 9 1 2 1 2 1 2 1 2 1 2 1 2 1 1 <C 1
+ 109 7 1 2 1 2 1 2 1 2 1 2 1 2 <C 2 2 1
110 8 1 2 1 2 1 2 1 2 1 2 1 1 C> 2 2 1
+ 112 10 1 2 1 2 1 2 1 2 1 2 14 C> 1
113 9 1 2 1 2 1 2 1 2 1 2 14 <C 2
+ 117 5 1 2 1 2 1 2 1 2 1 2 <C 25
118 6 1 2 1 2 1 2 1 2 1 1 C> 25
+ 123 11 1 2 1 2 1 2 1 2 17 C>
124 12 1 2 1 2 1 2 1 2 18 A>
125 13 1 2 1 2 1 2 1 2 19 B>
126 12 1 2 1 2 1 2 1 2 19 <C 1
+ 135 3 1 2 1 2 1 2 1 2 <C 29 1
136 4 1 2 1 2 1 2 1 1 C> 29 1
+ 145 13 1 2 1 2 1 2 111 C> 1
146 12 1 2 1 2 1 2 111 <C 2
+ 157 1 1 2 1 2 1 2 <C 212
158 2 1 2 1 2 1 1 C> 212
+ 170 14 1 2 1 2 114 C>
171 15 1 2 1 2 115 A>
172 16 1 2 1 2 116 B>
173 15 1 2 1 2 116 <C 1
+ 189 -1 1 2 1 2 <C 216 1
190 0 1 2 1 1 C> 216 1
+ 206 16 1 2 118 C> 1
207 15 1 2 118 <C 2
+ 225 -3 1 2 <C 219
226 -2 1 1 C> 219
+ 245 17 121 C>
246 18 122 A>
247 19 123 B>
248 18 123 <C 1
+ 271 -5 <C 223 1
272 -4 1 A> 223 1
273 -3 1 2 B> 222 1
274 -2 1 2 1 A> 221 1
275 -1 1 2 1 2 B> 220 1
276 0 1 2 1 2 1 A> 219 1
277 1 1 2 1 2 1 2 B> 218 1
278 2 1 2 1 2 1 2 1 A> 217 1
279 3 1 2 1 2 1 2 1 2 B> 216 1
280 4 1 2 1 2 1 2 1 2 1 A> 215 1
281 5 1 2 1 2 1 2 1 2 1 2 B> 214 1
282 6 1 2 1 2 1 2 1 2 1 2 1 A> 213 1
283 7 1 2 1 2 1 2 1 2 1 2 1 2 B> 212 1
284 8 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 211 1
285 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 210 1
286 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 29 1
287 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 28 1
288 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 27 1
289 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 26 1
290 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 25 1
291 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 24 1
292 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 23 1
293 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 2 1
294 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 2 1
295 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 1
296 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B
297 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A>
298 20 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 B>
299 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 <C 1
+ 302 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 23 1
303 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 23 1
+ 306 20 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 C> 1
307 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 <C 2
+ 312 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 26
313 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 26
+ 319 21 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 C>
320 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 19 A>
321 23 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 B>
322 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 <C 1
+ 332 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 210 1
333 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 210 1
+ 343 23 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 C> 1
344 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 <C 2
+ 356 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 213
357 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 213
+ 370 24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 115 C>
371 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 116 A>
372 26 1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 B>
373 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 <C 1
+ 390 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 217 1
391 9 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 217 1
+ 408 26 1 2 1 2 1 2 1 2 1 2 1 2 119 C> 1
409 25 1 2 1 2 1 2 1 2 1 2 1 2 119 <C 2
+ 428 6 1 2 1 2 1 2 1 2 1 2 1 2 <C 220
429 7 1 2 1 2 1 2 1 2 1 2 1 1 C> 220
+ 449 27 1 2 1 2 1 2 1 2 1 2 122 C>
450 28 1 2 1 2 1 2 1 2 1 2 123 A>
451 29 1 2 1 2 1 2 1 2 1 2 124 B>
452 28 1 2 1 2 1 2 1 2 1 2 124 <C 1
+ 476 4 1 2 1 2 1 2 1 2 1 2 <C 224 1
477 5 1 2 1 2 1 2 1 2 1 1 C> 224 1
+ 501 29 1 2 1 2 1 2 1 2 126 C> 1
502 28 1 2 1 2 1 2 1 2 126 <C 2
+ 528 2 1 2 1 2 1 2 1 2 <C 227
529 3 1 2 1 2 1 2 1 1 C> 227
+ 556 30 1 2 1 2 1 2 129 C>
557 31 1 2 1 2 1 2 130 A>
558 32 1 2 1 2 1 2 131 B>
559 31 1 2 1 2 1 2 131 <C 1
+ 590 0 1 2 1 2 1 2 <C 231 1
591 1 1 2 1 2 1 1 C> 231 1
+ 622 32 1 2 1 2 133 C> 1
623 31 1 2 1 2 133 <C 2
+ 656 -2 1 2 1 2 <C 234
657 -1 1 2 1 1 C> 234
+ 691 33 1 2 136 C>
692 34 1 2 137 A>
693 35 1 2 138 B>
694 34 1 2 138 <C 1
+ 732 -4 1 2 <C 238 1
733 -3 1 1 C> 238 1
+ 771 35 140 C> 1
772 34 140 <C 2
+ 812 -6 <C 241
813 -5 1 A> 241
814 -4 1 2 B> 240
815 -3 1 2 1 A> 239
816 -2 1 2 1 2 B> 238
817 -1 1 2 1 2 1 A> 237
818 0 1 2 1 2 1 2 B> 236
819 1 1 2 1 2 1 2 1 A> 235
820 2 1 2 1 2 1 2 1 2 B> 234
821 3 1 2 1 2 1 2 1 2 1 A> 233
822 4 1 2 1 2 1 2 1 2 1 2 B> 232
823 5 1 2 1 2 1 2 1 2 1 2 1 A> 231
824 6 1 2 1 2 1 2 1 2 1 2 1 2 B> 230
825 7 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 229
826 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 228
827 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 227
828 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 226
829 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 225
830 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 224
831 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 223
832 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 222
833 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 221
834 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 220
835 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 219
836 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 218
After 836 steps (201 lines): state = B.
Produced 42 nonzeros.
Tape index 18, scanned [-6 .. 35].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 51 | 15 | 36 | 0 | 4 | ||
| B | 53 | 15 | 3 | 35 | 1 | 5 | 6 |
| C | 732 | 15 | 391 | 326 | 3 | 2 | 23 |