3-state 3-symbol TM #b of G. Lafitte & C. Papazian

Comment: This TM produces 107'900 nonzeros in 4'939'345'068 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R Z1R B2R 1 right B 1 right Z 2 right B
B C1L B0L A1R 1 left C 0 left B 1 right A
C A1R C2L C1R 1 right A 2 left C 1 right C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <C 1
     3    -1  <C 2 1
     4     0  1 A> 2 1
     5     1  1 2 B> 1
     6     0  1 2 <B
     7     1  1 1 A>
     8     2  13 B>
     9     1  13 <C 1
+   12    -2  <C 23 1
    13    -1  1 A> 23 1
    14     0  1 2 B> 2 2 1
    15     1  1 2 1 A> 2 1
    16     2  1 2 1 2 B> 1
    17     1  1 2 1 2 <B
    18     2  1 2 1 1 A>
    19     3  1 2 13 B>
    20     2  1 2 13 <C 1
+   23    -1  1 2 <C 23 1
    24     0  1 1 C> 23 1
+   27     3  15 C> 1
    28     2  15 <C 2
+   33    -3  <C 26
    34    -2  1 A> 26
    35    -1  1 2 B> 25
    36     0  1 2 1 A> 24
    37     1  1 2 1 2 B> 23
    38     2  1 2 1 2 1 A> 2 2
    39     3  1 2 1 2 1 2 B> 2
    40     4  1 2 1 2 1 2 1 A>
    41     5  1 2 1 2 1 2 1 1 B>
    42     4  1 2 1 2 1 2 1 1 <C 1
+   44     2  1 2 1 2 1 2 <C 2 2 1
    45     3  1 2 1 2 1 1 C> 2 2 1
+   47     5  1 2 1 2 14 C> 1
    48     4  1 2 1 2 14 <C 2
+   52     0  1 2 1 2 <C 25
    53     1  1 2 1 1 C> 25
+   58     6  1 2 17 C>
    59     7  1 2 18 A>
    60     8  1 2 19 B>
    61     7  1 2 19 <C 1
+   70    -2  1 2 <C 29 1
    71    -1  1 1 C> 29 1
+   80     8  111 C> 1
    81     7  111 <C 2
+   92    -4  <C 212
    93    -3  1 A> 212
    94    -2  1 2 B> 211
    95    -1  1 2 1 A> 210
    96     0  1 2 1 2 B> 29
    97     1  1 2 1 2 1 A> 28
    98     2  1 2 1 2 1 2 B> 27
    99     3  1 2 1 2 1 2 1 A> 26
   100     4  1 2 1 2 1 2 1 2 B> 25
   101     5  1 2 1 2 1 2 1 2 1 A> 24
   102     6  1 2 1 2 1 2 1 2 1 2 B> 23
   103     7  1 2 1 2 1 2 1 2 1 2 1 A> 2 2
   104     8  1 2 1 2 1 2 1 2 1 2 1 2 B> 2
   105     9  1 2 1 2 1 2 1 2 1 2 1 2 1 A>
   106    10  1 2 1 2 1 2 1 2 1 2 1 2 1 1 B>
   107     9  1 2 1 2 1 2 1 2 1 2 1 2 1 1 <C 1
+  109     7  1 2 1 2 1 2 1 2 1 2 1 2 <C 2 2 1
   110     8  1 2 1 2 1 2 1 2 1 2 1 1 C> 2 2 1
+  112    10  1 2 1 2 1 2 1 2 1 2 14 C> 1
   113     9  1 2 1 2 1 2 1 2 1 2 14 <C 2
+  117     5  1 2 1 2 1 2 1 2 1 2 <C 25
   118     6  1 2 1 2 1 2 1 2 1 1 C> 25
+  123    11  1 2 1 2 1 2 1 2 17 C>
   124    12  1 2 1 2 1 2 1 2 18 A>
   125    13  1 2 1 2 1 2 1 2 19 B>
   126    12  1 2 1 2 1 2 1 2 19 <C 1
+  135     3  1 2 1 2 1 2 1 2 <C 29 1
   136     4  1 2 1 2 1 2 1 1 C> 29 1
+  145    13  1 2 1 2 1 2 111 C> 1
   146    12  1 2 1 2 1 2 111 <C 2
+  157     1  1 2 1 2 1 2 <C 212
   158     2  1 2 1 2 1 1 C> 212
+  170    14  1 2 1 2 114 C>
   171    15  1 2 1 2 115 A>
   172    16  1 2 1 2 116 B>
   173    15  1 2 1 2 116 <C 1
+  189    -1  1 2 1 2 <C 216 1
   190     0  1 2 1 1 C> 216 1
+  206    16  1 2 118 C> 1
   207    15  1 2 118 <C 2
+  225    -3  1 2 <C 219
   226    -2  1 1 C> 219
+  245    17  121 C>
   246    18  122 A>
   247    19  123 B>
   248    18  123 <C 1
+  271    -5  <C 223 1
   272    -4  1 A> 223 1
   273    -3  1 2 B> 222 1
   274    -2  1 2 1 A> 221 1
   275    -1  1 2 1 2 B> 220 1
   276     0  1 2 1 2 1 A> 219 1
   277     1  1 2 1 2 1 2 B> 218 1
   278     2  1 2 1 2 1 2 1 A> 217 1
   279     3  1 2 1 2 1 2 1 2 B> 216 1
   280     4  1 2 1 2 1 2 1 2 1 A> 215 1
   281     5  1 2 1 2 1 2 1 2 1 2 B> 214 1
   282     6  1 2 1 2 1 2 1 2 1 2 1 A> 213 1
   283     7  1 2 1 2 1 2 1 2 1 2 1 2 B> 212 1
   284     8  1 2 1 2 1 2 1 2 1 2 1 2 1 A> 211 1
   285     9  1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 210 1
   286    10  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 29 1
   287    11  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 28 1
   288    12  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 27 1
   289    13  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 26 1
   290    14  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 25 1
   291    15  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 24 1
   292    16  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 23 1
   293    17  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 2 1
   294    18  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 2 1
   295    19  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 1
   296    18  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B
   297    19  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A>
   298    20  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 B>
   299    19  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 <C 1
+  302    16  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 23 1
   303    17  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 23 1
+  306    20  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 C> 1
   307    19  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 <C 2
+  312    14  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 26
   313    15  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 26
+  319    21  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 C>
   320    22  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 19 A>
   321    23  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 B>
   322    22  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 <C 1
+  332    12  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 210 1
   333    13  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 210 1
+  343    23  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 C> 1
   344    22  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 <C 2
+  356    10  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 213
   357    11  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 213
+  370    24  1 2 1 2 1 2 1 2 1 2 1 2 1 2 115 C>
   371    25  1 2 1 2 1 2 1 2 1 2 1 2 1 2 116 A>
   372    26  1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 B>
   373    25  1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 <C 1
+  390     8  1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 217 1
   391     9  1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 217 1
+  408    26  1 2 1 2 1 2 1 2 1 2 1 2 119 C> 1
   409    25  1 2 1 2 1 2 1 2 1 2 1 2 119 <C 2
+  428     6  1 2 1 2 1 2 1 2 1 2 1 2 <C 220
   429     7  1 2 1 2 1 2 1 2 1 2 1 1 C> 220
+  449    27  1 2 1 2 1 2 1 2 1 2 122 C>
   450    28  1 2 1 2 1 2 1 2 1 2 123 A>
   451    29  1 2 1 2 1 2 1 2 1 2 124 B>
   452    28  1 2 1 2 1 2 1 2 1 2 124 <C 1
+  476     4  1 2 1 2 1 2 1 2 1 2 <C 224 1
   477     5  1 2 1 2 1 2 1 2 1 1 C> 224 1
+  501    29  1 2 1 2 1 2 1 2 126 C> 1
   502    28  1 2 1 2 1 2 1 2 126 <C 2
+  528     2  1 2 1 2 1 2 1 2 <C 227
   529     3  1 2 1 2 1 2 1 1 C> 227
+  556    30  1 2 1 2 1 2 129 C>
   557    31  1 2 1 2 1 2 130 A>
   558    32  1 2 1 2 1 2 131 B>
   559    31  1 2 1 2 1 2 131 <C 1
+  590     0  1 2 1 2 1 2 <C 231 1
   591     1  1 2 1 2 1 1 C> 231 1
+  622    32  1 2 1 2 133 C> 1
   623    31  1 2 1 2 133 <C 2
+  656    -2  1 2 1 2 <C 234
   657    -1  1 2 1 1 C> 234
+  691    33  1 2 136 C>
   692    34  1 2 137 A>
   693    35  1 2 138 B>
   694    34  1 2 138 <C 1
+  732    -4  1 2 <C 238 1
   733    -3  1 1 C> 238 1
+  771    35  140 C> 1
   772    34  140 <C 2
+  812    -6  <C 241
   813    -5  1 A> 241
   814    -4  1 2 B> 240
   815    -3  1 2 1 A> 239
   816    -2  1 2 1 2 B> 238
   817    -1  1 2 1 2 1 A> 237
   818     0  1 2 1 2 1 2 B> 236
   819     1  1 2 1 2 1 2 1 A> 235
   820     2  1 2 1 2 1 2 1 2 B> 234
   821     3  1 2 1 2 1 2 1 2 1 A> 233
   822     4  1 2 1 2 1 2 1 2 1 2 B> 232
   823     5  1 2 1 2 1 2 1 2 1 2 1 A> 231
   824     6  1 2 1 2 1 2 1 2 1 2 1 2 B> 230
   825     7  1 2 1 2 1 2 1 2 1 2 1 2 1 A> 229
   826     8  1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 228
   827     9  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 227
   828    10  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 226
   829    11  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 225
   830    12  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 224
   831    13  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 223
   832    14  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 222
   833    15  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 221
   834    16  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 220
   835    17  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 219
   836    18  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 218

After 836 steps (201 lines): state = B.
Produced     42 nonzeros.
Tape index 18, scanned [-6 .. 35].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 51 15   36 0   4
B 53 15 3 35 1 5 6
C 732 15 391 326 3 2 23
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:46 CEST 2010