Comment: This TM produces 107'900 nonzeros in 4'939'345'068 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | Z1R | B2R | 1 | right | B | 1 | right | Z | 2 | right | B |
B | C1L | B0L | A1R | 1 | left | C | 0 | left | B | 1 | right | A |
C | A1R | C2L | C1R | 1 | right | A | 2 | left | C | 1 | right | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 1 3 -1 <C 2 1 4 0 1 A> 2 1 5 1 1 2 B> 1 6 0 1 2 <B 7 1 1 1 A> 8 2 13 B> 9 1 13 <C 1 + 12 -2 <C 23 1 13 -1 1 A> 23 1 14 0 1 2 B> 2 2 1 15 1 1 2 1 A> 2 1 16 2 1 2 1 2 B> 1 17 1 1 2 1 2 <B 18 2 1 2 1 1 A> 19 3 1 2 13 B> 20 2 1 2 13 <C 1 + 23 -1 1 2 <C 23 1 24 0 1 1 C> 23 1 + 27 3 15 C> 1 28 2 15 <C 2 + 33 -3 <C 26 34 -2 1 A> 26 35 -1 1 2 B> 25 36 0 1 2 1 A> 24 37 1 1 2 1 2 B> 23 38 2 1 2 1 2 1 A> 2 2 39 3 1 2 1 2 1 2 B> 2 40 4 1 2 1 2 1 2 1 A> 41 5 1 2 1 2 1 2 1 1 B> 42 4 1 2 1 2 1 2 1 1 <C 1 + 44 2 1 2 1 2 1 2 <C 2 2 1 45 3 1 2 1 2 1 1 C> 2 2 1 + 47 5 1 2 1 2 14 C> 1 48 4 1 2 1 2 14 <C 2 + 52 0 1 2 1 2 <C 25 53 1 1 2 1 1 C> 25 + 58 6 1 2 17 C> 59 7 1 2 18 A> 60 8 1 2 19 B> 61 7 1 2 19 <C 1 + 70 -2 1 2 <C 29 1 71 -1 1 1 C> 29 1 + 80 8 111 C> 1 81 7 111 <C 2 + 92 -4 <C 212 93 -3 1 A> 212 94 -2 1 2 B> 211 95 -1 1 2 1 A> 210 96 0 1 2 1 2 B> 29 97 1 1 2 1 2 1 A> 28 98 2 1 2 1 2 1 2 B> 27 99 3 1 2 1 2 1 2 1 A> 26 100 4 1 2 1 2 1 2 1 2 B> 25 101 5 1 2 1 2 1 2 1 2 1 A> 24 102 6 1 2 1 2 1 2 1 2 1 2 B> 23 103 7 1 2 1 2 1 2 1 2 1 2 1 A> 2 2 104 8 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 105 9 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 106 10 1 2 1 2 1 2 1 2 1 2 1 2 1 1 B> 107 9 1 2 1 2 1 2 1 2 1 2 1 2 1 1 <C 1 + 109 7 1 2 1 2 1 2 1 2 1 2 1 2 <C 2 2 1 110 8 1 2 1 2 1 2 1 2 1 2 1 1 C> 2 2 1 + 112 10 1 2 1 2 1 2 1 2 1 2 14 C> 1 113 9 1 2 1 2 1 2 1 2 1 2 14 <C 2 + 117 5 1 2 1 2 1 2 1 2 1 2 <C 25 118 6 1 2 1 2 1 2 1 2 1 1 C> 25 + 123 11 1 2 1 2 1 2 1 2 17 C> 124 12 1 2 1 2 1 2 1 2 18 A> 125 13 1 2 1 2 1 2 1 2 19 B> 126 12 1 2 1 2 1 2 1 2 19 <C 1 + 135 3 1 2 1 2 1 2 1 2 <C 29 1 136 4 1 2 1 2 1 2 1 1 C> 29 1 + 145 13 1 2 1 2 1 2 111 C> 1 146 12 1 2 1 2 1 2 111 <C 2 + 157 1 1 2 1 2 1 2 <C 212 158 2 1 2 1 2 1 1 C> 212 + 170 14 1 2 1 2 114 C> 171 15 1 2 1 2 115 A> 172 16 1 2 1 2 116 B> 173 15 1 2 1 2 116 <C 1 + 189 -1 1 2 1 2 <C 216 1 190 0 1 2 1 1 C> 216 1 + 206 16 1 2 118 C> 1 207 15 1 2 118 <C 2 + 225 -3 1 2 <C 219 226 -2 1 1 C> 219 + 245 17 121 C> 246 18 122 A> 247 19 123 B> 248 18 123 <C 1 + 271 -5 <C 223 1 272 -4 1 A> 223 1 273 -3 1 2 B> 222 1 274 -2 1 2 1 A> 221 1 275 -1 1 2 1 2 B> 220 1 276 0 1 2 1 2 1 A> 219 1 277 1 1 2 1 2 1 2 B> 218 1 278 2 1 2 1 2 1 2 1 A> 217 1 279 3 1 2 1 2 1 2 1 2 B> 216 1 280 4 1 2 1 2 1 2 1 2 1 A> 215 1 281 5 1 2 1 2 1 2 1 2 1 2 B> 214 1 282 6 1 2 1 2 1 2 1 2 1 2 1 A> 213 1 283 7 1 2 1 2 1 2 1 2 1 2 1 2 B> 212 1 284 8 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 211 1 285 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 210 1 286 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 29 1 287 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 28 1 288 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 27 1 289 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 26 1 290 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 25 1 291 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 24 1 292 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 23 1 293 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 2 1 294 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 2 1 295 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 1 296 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B 297 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 298 20 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 B> 299 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 <C 1 + 302 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 23 1 303 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 23 1 + 306 20 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 C> 1 307 19 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 15 <C 2 + 312 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 26 313 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 26 + 319 21 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 C> 320 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 19 A> 321 23 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 B> 322 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 110 <C 1 + 332 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 210 1 333 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 210 1 + 343 23 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 C> 1 344 22 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 112 <C 2 + 356 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 213 357 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 213 + 370 24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 115 C> 371 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 116 A> 372 26 1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 B> 373 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 117 <C 1 + 390 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <C 217 1 391 9 1 2 1 2 1 2 1 2 1 2 1 2 1 1 C> 217 1 + 408 26 1 2 1 2 1 2 1 2 1 2 1 2 119 C> 1 409 25 1 2 1 2 1 2 1 2 1 2 1 2 119 <C 2 + 428 6 1 2 1 2 1 2 1 2 1 2 1 2 <C 220 429 7 1 2 1 2 1 2 1 2 1 2 1 1 C> 220 + 449 27 1 2 1 2 1 2 1 2 1 2 122 C> 450 28 1 2 1 2 1 2 1 2 1 2 123 A> 451 29 1 2 1 2 1 2 1 2 1 2 124 B> 452 28 1 2 1 2 1 2 1 2 1 2 124 <C 1 + 476 4 1 2 1 2 1 2 1 2 1 2 <C 224 1 477 5 1 2 1 2 1 2 1 2 1 1 C> 224 1 + 501 29 1 2 1 2 1 2 1 2 126 C> 1 502 28 1 2 1 2 1 2 1 2 126 <C 2 + 528 2 1 2 1 2 1 2 1 2 <C 227 529 3 1 2 1 2 1 2 1 1 C> 227 + 556 30 1 2 1 2 1 2 129 C> 557 31 1 2 1 2 1 2 130 A> 558 32 1 2 1 2 1 2 131 B> 559 31 1 2 1 2 1 2 131 <C 1 + 590 0 1 2 1 2 1 2 <C 231 1 591 1 1 2 1 2 1 1 C> 231 1 + 622 32 1 2 1 2 133 C> 1 623 31 1 2 1 2 133 <C 2 + 656 -2 1 2 1 2 <C 234 657 -1 1 2 1 1 C> 234 + 691 33 1 2 136 C> 692 34 1 2 137 A> 693 35 1 2 138 B> 694 34 1 2 138 <C 1 + 732 -4 1 2 <C 238 1 733 -3 1 1 C> 238 1 + 771 35 140 C> 1 772 34 140 <C 2 + 812 -6 <C 241 813 -5 1 A> 241 814 -4 1 2 B> 240 815 -3 1 2 1 A> 239 816 -2 1 2 1 2 B> 238 817 -1 1 2 1 2 1 A> 237 818 0 1 2 1 2 1 2 B> 236 819 1 1 2 1 2 1 2 1 A> 235 820 2 1 2 1 2 1 2 1 2 B> 234 821 3 1 2 1 2 1 2 1 2 1 A> 233 822 4 1 2 1 2 1 2 1 2 1 2 B> 232 823 5 1 2 1 2 1 2 1 2 1 2 1 A> 231 824 6 1 2 1 2 1 2 1 2 1 2 1 2 B> 230 825 7 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 229 826 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 228 827 9 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 227 828 10 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 226 829 11 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 225 830 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 224 831 13 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 223 832 14 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 222 833 15 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 221 834 16 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 220 835 17 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 A> 219 836 18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 218 After 836 steps (201 lines): state = B. Produced 42 nonzeros. Tape index 18, scanned [-6 .. 35].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 51 | 15 | 36 | 0 | 4 | ||
B | 53 | 15 | 3 | 35 | 1 | 5 | 6 |
C | 732 | 15 | 391 | 326 | 3 | 2 | 23 |