3-state 3-symbol TM #a of G. Lafitte & C. Papazian

Comment: This TM produces 43'925 nonzeros in 1'808'669'046 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R A2L A1R 1 right B 2 left A 1 right A
B C1L A1L C2R 1 left C 1 left A 2 right C
C Z1R A1L B2R 1 right Z 1 left A 2 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 C . . . . . 11
     3   -1 A . . . . .011
     4    0 B . . . . .111
     5   -1 A . . . . .111
     6   -2 A . . . . 0211
     7   -1 B . . . . 1211
     8    0 C . . . . 1211
     9   -1 A . . . . 1211
    10    0 A . . . . 1111
    11   -1 A . . . . 1121
    12   -2 A . . . . 1221
    13   -3 A . . . .02221
    14   -2 B . . . .12221
    15   -1 C . . . .12221
    16    0 B . . . .12221
    17    1 C . . . .12221
    18    0 A . . . .12221
    19    1 A . . . .12211
    20    0 A . . . .12212
    21   -1 A . . . .12222
    22    0 A . . . .12122
    23    1 A . . . .12112
    24    2 A . . . .121110
    25    3 B . . . .1211110
    26    2 C . . . .1211111
    27    1 A . . . .1211111
    28    0 A . . . .1211211
    29   -1 A . . . .1212211
    30   -2 A . . . .1222211
    31   -1 A . . . .1122211
    32    0 A . . . .1112211
    33    1 A . . . .1111211
    34    2 A . . . .1111111
    35    1 A . . . .1111121
    36    0 A . . . .1111221
    37   -1 A . . . .1112221
    38   -2 A . . . .1122221
    39   -3 A . . . .1222221
    40   -4 A . . . 02222221
    41   -3 B . . . 12222221
    42   -2 C . . . 12222221
    43   -1 B . . . 12222221
    44    0 C . . . 12222221
    45    1 B . . . 12222221
    46    2 C . . . 12222221
    47    3 B . . . 12222221
    48    2 A . . . 12222221
    49    3 A . . . 12222211
    50    2 A . . . 12222212
    51    1 A . . . 12222222
    52    2 A . . . 12222122
    53    3 A . . . 12222112
    54    4 A . . . 122221110
    55    5 B . . . 1222211110
    56    4 C . . . 1222211111
    57    3 A . . . 1222211111
    58    2 A . . . 1222211211
    59    1 A . . . 1222212211
    60    0 A . . . 1222222211
    61    1 A . . . 1222122211
    62    2 A . . . 1222112211
    63    3 A . . . 1222111211
    64    4 A . . . 1222111111
    65    3 A . . . 1222111121
    66    2 A . . . 1222111221
    67    1 A . . . 1222112221
    68    0 A . . . 1222122221
    69   -1 A . . . 1222222221
    70    0 A . . . 1221222221
    71    1 A . . . 1221122221
    72    2 A . . . 1221112221
    73    3 A . . . 1221111221
    74    4 A . . . 1221111121
    75    5 A . . . 1221111111
    76    4 A . . . 1221111112
    77    3 A . . . 1221111122
    78    2 A . . . 1221111222
    79    1 A . . . 1221112222
    80    0 A . . . 1221122222
    81   -1 A . . . 1221222222
    82   -2 A . . . 1222222222
    83   -1 A . . . 1212222222
    84    0 A . . . 1211222222
    85    1 A . . . 1211122222
    86    2 A . . . 1211112222
    87    3 A . . . 1211111222
    88    4 A . . . 1211111122
    89    5 A . . . 1211111112
    90    6 A . . . 12111111110
    91    7 B . . . 121111111110
    92    6 C . . . 121111111111
    93    5 A . . . 121111111111
    94    4 A . . . 121111111211
    95    3 A . . . 121111112211
    96    2 A . . . 121111122211
    97    1 A . . . 121111222211
    98    0 A . . . 121112222211
    99   -1 A . . . 121122222211
   100   -2 A . . . 121222222211
   101   -3 A . . . 122222222211
   102   -2 A . . . 112222222211
   103   -1 A . . . 111222222211
   104    0 A . . . 111122222211
   105    1 A . . . 111112222211
   106    2 A . . . 111111222211
   107    3 A . . . 111111122211
   108    4 A . . . 111111112211
   109    5 A . . . 111111111211
   110    6 A . . . 111111111111
   111    5 A . . . 111111111121
   112    4 A . . . 111111111221
   113    3 A . . . 111111112221
   114    2 A . . . 111111122221
   115    1 A . . . 111111222221
   116    0 A . . . 111112222221
   117   -1 A . . . 111122222221
   118   -2 A . . . 111222222221
   119   -3 A . . . 112222222221
   120   -4 A . . . 122222222221
   121   -5 A . . .0222222222221
   122   -4 B . . .1222222222221
   123   -3 C . . .1222222222221
   124   -2 B . . .1222222222221
   125   -1 C . . .1222222222221
   126    0 B . . .1222222222221
   127    1 C . . .1222222222221
   128    2 B . . .1222222222221
   129    3 C . . .1222222222221
   130    4 B . . .1222222222221
   131    5 C . . .1222222222221
   132    6 B . . .1222222222221
   133    7 C . . .1222222222221
   134    6 A . . .1222222222221
   135    7 A . . .1222222222211
   136    6 A . . .1222222222212
   137    5 A . . .1222222222222
   138    6 A . . .1222222222122
   139    7 A . . .1222222222112
   140    8 A . . .12222222221110
   141    9 B . . .122222222211110
   142    8 C . . .122222222211111
   143    7 A . . .122222222211111
   144    6 A . . .122222222211211
   145    5 A . . .122222222212211
   146    4 A . . .122222222222211
   147    5 A . . .122222222122211
   148    6 A . . .122222222112211
   149    7 A . . .122222222111211
   150    8 A . . .122222222111111
   151    7 A . . .122222222111121
   152    6 A . . .122222222111221
   153    5 A . . .122222222112221
   154    4 A . . .122222222122221
   155    3 A . . .122222222222221
   156    4 A . . .122222221222221
   157    5 A . . .122222221122221
   158    6 A . . .122222221112221
   159    7 A . . .122222221111221
   160    8 A . . .122222221111121
   161    9 A . . .122222221111111
   162    8 A . . .122222221111112
   163    7 A . . .122222221111122
   164    6 A . . .122222221111222
   165    5 A . . .122222221112222
   166    4 A . . .122222221122222
   167    3 A . . .122222221222222
   168    2 A . . .122222222222222
   169    3 A . . .122222212222222
   170    4 A . . .122222211222222
   171    5 A . . .122222211122222
   172    6 A . . .122222211112222
   173    7 A . . .122222211111222
   174    8 A . . .122222211111122
   175    9 A . . .122222211111112
   176   10 A . . .1222222111111110
   177   11 B . . .12222221111111110
   178   10 C . . .12222221111111111
   179    9 A . . .12222221111111111
   180    8 A . . .12222221111111211
   181    7 A . . .12222221111112211
   182    6 A . . .12222221111122211
   183    5 A . . .12222221111222211
   184    4 A . . .12222221112222211
   185    3 A . . .12222221122222211
   186    2 A . . .12222221222222211
   187    1 A . . .12222222222222211
   188    2 A . . .12222212222222211
   189    3 A . . .12222211222222211
   190    4 A . . .12222211122222211
   191    5 A . . .12222211112222211
   192    6 A . . .12222211111222211
   193    7 A . . .12222211111122211
   194    8 A . . .12222211111112211
   195    9 A . . .12222211111111211
   196   10 A . . .12222211111111111
   197    9 A . . .12222211111111121
   198    8 A . . .12222211111111221
   199    7 A . . .12222211111112221
   200    6 A . . .12222211111122221

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 6, scanned [-5 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 162 11 80 71 0 5 9
B 20 6 2 12 1 4 7
C 18   9 9   2 15
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:44 CEST 2010