Comment: This TM produces 43'925 nonzeros in 1'808'669'046 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
B | C1L | A1L | C2R | 1 | left | C | 1 | left | A | 2 | right | C |
C | Z1R | A1L | B2R | 1 | right | Z | 1 | left | A | 2 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 1 3 -1 <A 1 1 4 0 1 B> 1 1 5 -1 1 <A 1 1 6 -2 <A 2 1 1 7 -1 1 B> 2 1 1 8 0 1 2 C> 1 1 9 -1 1 2 <A 1 1 10 0 1 1 A> 1 1 11 -1 1 1 <A 2 1 + 13 -3 <A 23 1 14 -2 1 B> 23 1 15 -1 1 2 C> 2 2 1 16 0 1 2 2 B> 2 1 17 1 1 23 C> 1 18 0 1 23 <A 1 19 1 1 2 2 1 A> 1 20 0 1 2 2 1 <A 2 21 -1 1 2 2 <A 2 2 22 0 1 2 1 A> 2 2 + 24 2 1 2 13 A> 25 3 1 2 14 B> 26 2 1 2 14 <C 1 27 1 1 2 13 <A 1 1 + 30 -2 1 2 <A 23 1 1 31 -1 1 1 A> 23 1 1 + 34 2 15 A> 1 1 35 1 15 <A 2 1 + 40 -4 <A 26 1 41 -3 1 B> 26 1 42 -2 1 2 C> 25 1 43 -1 1 2 2 B> 24 1 44 0 1 23 C> 23 1 45 1 1 24 B> 2 2 1 46 2 1 25 C> 2 1 47 3 1 26 B> 1 48 2 1 26 <A 1 49 3 1 25 1 A> 1 50 2 1 25 1 <A 2 51 1 1 25 <A 2 2 52 2 1 24 1 A> 2 2 + 54 4 1 24 13 A> 55 5 1 24 14 B> 56 4 1 24 14 <C 1 57 3 1 24 13 <A 1 1 + 60 0 1 24 <A 23 1 1 61 1 1 23 1 A> 23 1 1 + 64 4 1 23 14 A> 1 1 65 3 1 23 14 <A 2 1 + 69 -1 1 23 <A 25 1 70 0 1 2 2 1 A> 25 1 + 75 5 1 2 2 16 A> 1 76 4 1 2 2 16 <A 2 + 82 -2 1 2 2 <A 27 83 -1 1 2 1 A> 27 + 90 6 1 2 18 A> 91 7 1 2 19 B> 92 6 1 2 19 <C 1 93 5 1 2 18 <A 1 1 + 101 -3 1 2 <A 28 1 1 102 -2 1 1 A> 28 1 1 + 110 6 110 A> 1 1 111 5 110 <A 2 1 + 121 -5 <A 211 1 122 -4 1 B> 211 1 123 -3 1 2 C> 210 1 124 -2 1 2 2 B> 29 1 125 -1 1 23 C> 28 1 126 0 1 24 B> 27 1 127 1 1 25 C> 26 1 128 2 1 26 B> 25 1 129 3 1 27 C> 24 1 130 4 1 28 B> 23 1 131 5 1 29 C> 2 2 1 132 6 1 210 B> 2 1 133 7 1 211 C> 1 134 6 1 211 <A 1 135 7 1 210 1 A> 1 136 6 1 210 1 <A 2 137 5 1 210 <A 2 2 138 6 1 29 1 A> 2 2 + 140 8 1 29 13 A> 141 9 1 29 14 B> 142 8 1 29 14 <C 1 143 7 1 29 13 <A 1 1 + 146 4 1 29 <A 23 1 1 147 5 1 28 1 A> 23 1 1 + 150 8 1 28 14 A> 1 1 151 7 1 28 14 <A 2 1 + 155 3 1 28 <A 25 1 156 4 1 27 1 A> 25 1 + 161 9 1 27 16 A> 1 162 8 1 27 16 <A 2 + 168 2 1 27 <A 27 169 3 1 26 1 A> 27 + 176 10 1 26 18 A> 177 11 1 26 19 B> 178 10 1 26 19 <C 1 179 9 1 26 18 <A 1 1 + 187 1 1 26 <A 28 1 1 188 2 1 25 1 A> 28 1 1 + 196 10 1 25 19 A> 1 1 197 9 1 25 19 <A 2 1 + 206 0 1 25 <A 210 1 207 1 1 24 1 A> 210 1 + 217 11 1 24 111 A> 1 218 10 1 24 111 <A 2 + 229 -1 1 24 <A 212 230 0 1 23 1 A> 212 + 242 12 1 23 113 A> 243 13 1 23 114 B> 244 12 1 23 114 <C 1 245 11 1 23 113 <A 1 1 + 258 -2 1 23 <A 213 1 1 259 -1 1 2 2 1 A> 213 1 1 + 272 12 1 2 2 114 A> 1 1 273 11 1 2 2 114 <A 2 1 + 287 -3 1 2 2 <A 215 1 288 -2 1 2 1 A> 215 1 + 303 13 1 2 116 A> 1 304 12 1 2 116 <A 2 + 320 -4 1 2 <A 217 321 -3 1 1 A> 217 + 338 14 119 A> 339 15 120 B> 340 14 120 <C 1 341 13 119 <A 1 1 + 360 -6 <A 219 1 1 361 -5 1 B> 219 1 1 362 -4 1 2 C> 218 1 1 363 -3 1 2 2 B> 217 1 1 364 -2 1 23 C> 216 1 1 365 -1 1 24 B> 215 1 1 366 0 1 25 C> 214 1 1 367 1 1 26 B> 213 1 1 368 2 1 27 C> 212 1 1 369 3 1 28 B> 211 1 1 370 4 1 29 C> 210 1 1 371 5 1 210 B> 29 1 1 372 6 1 211 C> 28 1 1 373 7 1 212 B> 27 1 1 374 8 1 213 C> 26 1 1 375 9 1 214 B> 25 1 1 376 10 1 215 C> 24 1 1 377 11 1 216 B> 23 1 1 378 12 1 217 C> 2 2 1 1 379 13 1 218 B> 2 1 1 380 14 1 219 C> 1 1 381 13 1 219 <A 1 1 382 14 1 218 1 A> 1 1 383 13 1 218 1 <A 2 1 384 12 1 218 <A 2 2 1 385 13 1 217 1 A> 2 2 1 + 387 15 1 217 13 A> 1 388 14 1 217 13 <A 2 + 391 11 1 217 <A 24 392 12 1 216 1 A> 24 + 396 16 1 216 15 A> 397 17 1 216 16 B> 398 16 1 216 16 <C 1 399 15 1 216 15 <A 1 1 + 404 10 1 216 <A 25 1 1 405 11 1 215 1 A> 25 1 1 + 410 16 1 215 16 A> 1 1 411 15 1 215 16 <A 2 1 + 417 9 1 215 <A 27 1 418 10 1 214 1 A> 27 1 + 425 17 1 214 18 A> 1 426 16 1 214 18 <A 2 + 434 8 1 214 <A 29 435 9 1 213 1 A> 29 + 444 18 1 213 110 A> 445 19 1 213 111 B> 446 18 1 213 111 <C 1 447 17 1 213 110 <A 1 1 + 457 7 1 213 <A 210 1 1 458 8 1 212 1 A> 210 1 1 + 468 18 1 212 111 A> 1 1 469 17 1 212 111 <A 2 1 + 480 6 1 212 <A 212 1 481 7 1 211 1 A> 212 1 + 493 19 1 211 113 A> 1 494 18 1 211 113 <A 2 + 507 5 1 211 <A 214 508 6 1 210 1 A> 214 + 522 20 1 210 115 A> 523 21 1 210 116 B> 524 20 1 210 116 <C 1 525 19 1 210 115 <A 1 1 + 540 4 1 210 <A 215 1 1 541 5 1 29 1 A> 215 1 1 + 556 20 1 29 116 A> 1 1 557 19 1 29 116 <A 2 1 + 573 3 1 29 <A 217 1 574 4 1 28 1 A> 217 1 + 591 21 1 28 118 A> 1 592 20 1 28 118 <A 2 + 610 2 1 28 <A 219 611 3 1 27 1 A> 219 After 611 steps (201 lines): state = A. Produced 28 nonzeros. Tape index 3, scanned [-6 .. 21].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 543 | 17 | 276 | 250 | 0 | 5 | 9 |
B | 35 | 11 | 2 | 22 | 1 | 4 | 7 |
C | 33 | 15 | 18 | 2 | 15 |