2-state 5-symbol TM #h (G. Lafitte & C. Papazian)

Comment: This TM produces 2,576,467 nonzeros in 3,793,261,759,791 steps.
Comment: Same result with B4->B3L

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R B4L A2R A3L 1 right B 3 right A 4 left B 2 right A 3 left A
B A2L Z2L B4R B4R B2L 2 left A 2 left Z 4 right B 4 right B 2 left B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (0)A>
    1        1       1  (1)B>
    2        7      -1  <B(2) 2
    3        8      -2  <A(2) 22
    4       10       0  1 (4)B> 22
    5       12       2  1 42 (4)B>
    6       14       0  1 42 <A(3) 2
    7       16      -2  1 <A(3) 32 2
    8       18       0  3 (2)A> 32 2
    9       20       2  3 22 (2)A> 2
   10       24       0  3 22 <B(2) 2
   11       26       2  3 2 4 (4)B> 2
   12       27       3  3 2 42 (4)B>
   13       29       1  3 2 42 <A(3) 2
   14       31      -1  3 2 <A(3) 32 2
   15       32      -2  3 <B(4) 33 2
   16       35      -3  <B(2) 2 33 2
   17       36      -4  <A(2) 22 33 2
   18       38      -2  1 (4)B> 22 33 2
   19       40       0  1 42 (4)B> 33 2
   20       43       3  1 45 (4)B> 2
   21       44       4  1 46 (4)B>
   22       46       2  1 46 <A(3) 2
   23       52      -4  1 <A(3) 36 2
   24       54      -2  3 (2)A> 36 2
   25       60       4  3 26 (2)A> 2
   26       64       2  3 26 <B(2) 2
   27       66       4  3 25 4 (4)B> 2
   28       67       5  3 25 42 (4)B>
   29       69       3  3 25 42 <A(3) 2
   30       71       1  3 25 <A(3) 32 2
   31       72       0  3 24 <B(4) 33 2
   32       75      -1  3 23 <B(2) 2 33 2
   33       77       1  3 22 4 (4)B> 2 33 2
   34       78       2  3 22 42 (4)B> 33 2
   35       81       5  3 22 45 (4)B> 2
   36       82       6  3 22 46 (4)B>
   37       84       4  3 22 46 <A(3) 2
   38       90      -2  3 22 <A(3) 36 2
   39       91      -3  3 2 <B(4) 37 2
   40       94      -4  3 <B(2) 2 37 2
   41       96      -2  4 (4)B> 2 37 2
   42       97      -1  42 (4)B> 37 2
   43      104       6  49 (4)B> 2
   44      105       7  410 (4)B>
   45      107       5  410 <A(3) 2
   46      117      -5  <A(3) 310 2
   47      119      -3  1 (4)B> 310 2
   48      129       7  1 410 (4)B> 2
   49      130       8  1 411 (4)B>
   50      132       6  1 411 <A(3) 2
   51      143      -5  1 <A(3) 311 2
   52      145      -3  3 (2)A> 311 2
   53      156       8  3 211 (2)A> 2
   54      160       6  3 211 <B(2) 2
   55      162       8  3 210 4 (4)B> 2
   56      163       9  3 210 42 (4)B>
   57      165       7  3 210 42 <A(3) 2
   58      167       5  3 210 <A(3) 32 2
   59      168       4  3 29 <B(4) 33 2
   60      171       3  3 28 <B(2) 2 33 2
   61      173       5  3 27 4 (4)B> 2 33 2
   62      174       6  3 27 42 (4)B> 33 2
   63      177       9  3 27 45 (4)B> 2
   64      178      10  3 27 46 (4)B>
   65      180       8  3 27 46 <A(3) 2
   66      186       2  3 27 <A(3) 36 2
   67      187       1  3 26 <B(4) 37 2
   68      190       0  3 25 <B(2) 2 37 2
   69      192       2  3 24 4 (4)B> 2 37 2
   70      193       3  3 24 42 (4)B> 37 2
   71      200      10  3 24 49 (4)B> 2
   72      201      11  3 24 410 (4)B>
   73      203       9  3 24 410 <A(3) 2
   74      213      -1  3 24 <A(3) 310 2
   75      214      -2  3 23 <B(4) 311 2
   76      217      -3  3 22 <B(2) 2 311 2
   77      219      -1  3 2 4 (4)B> 2 311 2
   78      220       0  3 2 42 (4)B> 311 2
   79      231      11  3 2 413 (4)B> 2
   80      232      12  3 2 414 (4)B>
   81      234      10  3 2 414 <A(3) 2
   82      248      -4  3 2 <A(3) 314 2
   83      249      -5  3 <B(4) 315 2
   84      252      -6  <B(2) 2 315 2
   85      253      -7  <A(2) 22 315 2
   86      255      -5  1 (4)B> 22 315 2
   87      257      -3  1 42 (4)B> 315 2
   88      272      12  1 417 (4)B> 2
   89      273      13  1 418 (4)B>
   90      275      11  1 418 <A(3) 2
   91      293      -7  1 <A(3) 318 2
   92      295      -5  3 (2)A> 318 2
   93      313      13  3 218 (2)A> 2
   94      317      11  3 218 <B(2) 2
   95      319      13  3 217 4 (4)B> 2
   96      320      14  3 217 42 (4)B>
   97      322      12  3 217 42 <A(3) 2
   98      324      10  3 217 <A(3) 32 2
   99      325       9  3 216 <B(4) 33 2
  100      328       8  3 215 <B(2) 2 33 2
  101      330      10  3 214 4 (4)B> 2 33 2
  102      331      11  3 214 42 (4)B> 33 2
  103      334      14  3 214 45 (4)B> 2
  104      335      15  3 214 46 (4)B>
  105      337      13  3 214 46 <A(3) 2
  106      343       7  3 214 <A(3) 36 2
  107      344       6  3 213 <B(4) 37 2
  108      347       5  3 212 <B(2) 2 37 2
  109      349       7  3 211 4 (4)B> 2 37 2
  110      350       8  3 211 42 (4)B> 37 2
  111      357      15  3 211 49 (4)B> 2
  112      358      16  3 211 410 (4)B>
  113      360      14  3 211 410 <A(3) 2
  114      370       4  3 211 <A(3) 310 2
  115      371       3  3 210 <B(4) 311 2
  116      374       2  3 29 <B(2) 2 311 2
  117      376       4  3 28 4 (4)B> 2 311 2
  118      377       5  3 28 42 (4)B> 311 2
  119      388      16  3 28 413 (4)B> 2
  120      389      17  3 28 414 (4)B>
  121      391      15  3 28 414 <A(3) 2
  122      405       1  3 28 <A(3) 314 2
  123      406       0  3 27 <B(4) 315 2
  124      409      -1  3 26 <B(2) 2 315 2
  125      411       1  3 25 4 (4)B> 2 315 2
  126      412       2  3 25 42 (4)B> 315 2
  127      427      17  3 25 417 (4)B> 2
  128      428      18  3 25 418 (4)B>
  129      430      16  3 25 418 <A(3) 2
  130      448      -2  3 25 <A(3) 318 2
  131      449      -3  3 24 <B(4) 319 2
  132      452      -4  3 23 <B(2) 2 319 2
  133      454      -2  3 22 4 (4)B> 2 319 2
  134      455      -1  3 22 42 (4)B> 319 2
  135      474      18  3 22 421 (4)B> 2
  136      475      19  3 22 422 (4)B>
  137      477      17  3 22 422 <A(3) 2
  138      499      -5  3 22 <A(3) 322 2
  139      500      -6  3 2 <B(4) 323 2
  140      503      -7  3 <B(2) 2 323 2
  141      505      -5  4 (4)B> 2 323 2
  142      506      -4  42 (4)B> 323 2
  143      529      19  425 (4)B> 2
  144      530      20  426 (4)B>
  145      532      18  426 <A(3) 2
  146      558      -8  <A(3) 326 2
  147      560      -6  1 (4)B> 326 2
  148      586      20  1 426 (4)B> 2
  149      587      21  1 427 (4)B>
  150      589      19  1 427 <A(3) 2
  151      616      -8  1 <A(3) 327 2
  152      618      -6  3 (2)A> 327 2
  153      645      21  3 227 (2)A> 2
  154      649      19  3 227 <B(2) 2
  155      651      21  3 226 4 (4)B> 2
  156      652      22  3 226 42 (4)B>
  157      654      20  3 226 42 <A(3) 2
  158      656      18  3 226 <A(3) 32 2
  159      657      17  3 225 <B(4) 33 2
  160      660      16  3 224 <B(2) 2 33 2
  161      662      18  3 223 4 (4)B> 2 33 2
  162      663      19  3 223 42 (4)B> 33 2
  163      666      22  3 223 45 (4)B> 2
  164      667      23  3 223 46 (4)B>
  165      669      21  3 223 46 <A(3) 2
  166      675      15  3 223 <A(3) 36 2
  167      676      14  3 222 <B(4) 37 2
  168      679      13  3 221 <B(2) 2 37 2
  169      681      15  3 220 4 (4)B> 2 37 2
  170      682      16  3 220 42 (4)B> 37 2
  171      689      23  3 220 49 (4)B> 2
  172      690      24  3 220 410 (4)B>
  173      692      22  3 220 410 <A(3) 2
  174      702      12  3 220 <A(3) 310 2
  175      703      11  3 219 <B(4) 311 2
  176      706      10  3 218 <B(2) 2 311 2
  177      708      12  3 217 4 (4)B> 2 311 2
  178      709      13  3 217 42 (4)B> 311 2
  179      720      24  3 217 413 (4)B> 2
  180      721      25  3 217 414 (4)B>
  181      723      23  3 217 414 <A(3) 2
  182      737       9  3 217 <A(3) 314 2
  183      738       8  3 216 <B(4) 315 2
  184      741       7  3 215 <B(2) 2 315 2
  185      743       9  3 214 4 (4)B> 2 315 2
  186      744      10  3 214 42 (4)B> 315 2
  187      759      25  3 214 417 (4)B> 2
  188      760      26  3 214 418 (4)B>
  189      762      24  3 214 418 <A(3) 2
  190      780       6  3 214 <A(3) 318 2
  191      781       5  3 213 <B(4) 319 2
  192      784       4  3 212 <B(2) 2 319 2
  193      786       6  3 211 4 (4)B> 2 319 2
  194      787       7  3 211 42 (4)B> 319 2
  195      806      26  3 211 421 (4)B> 2
  196      807      27  3 211 422 (4)B>
  197      809      25  3 211 422 <A(3) 2
  198      831       3  3 211 <A(3) 322 2
  199      832       2  3 210 <B(4) 323 2
  200      835       1  3 29 <B(2) 2 323 2

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 835
Tape index:  1
nonzeros:    36
log10(nonzeros):    1.556
log10(steps   ):    2.922

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #h (G. Lafitte & C. Papazian)
    5T  B1R A3R B4L A2R A3L  A2L Z2L B4R B4R B2L
    : 2,576,467 3,793,261,759,791 
    C Same result with B4->B3L
    L 10
    M	201
    pref	sim
    machv Laf25_h  	just simple
    machv Laf25_h-r	with repetitions reduced
    machv Laf25_h-1	with tape symbol exponents
    machv Laf25_h-m	as bck-macro machine
    machv Laf25_h-a	as bck-macro machine with pure additive config-TRs
    iam	Laf25_h-m
    mtype	0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:04 CEST 2010
    edate	Tue Jul  6 22:12:05 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:04 CEST 2010
Ready: Tue Jul 6 22:12:05 CEST 2010