Comment: This TM produces 2,576,467 nonzeros in 3,793,261,759,791 steps. Comment: Same result with B4->B3L Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | A3R | B4L | A2R | A3L | 1 | right | B | 3 | right | A | 4 | left | B | 2 | right | A | 3 | left | A |
| B | A2L | Z2L | B4R | B4R | B2L | 2 | left | A | 2 | left | Z | 4 | right | B | 4 | right | B | 2 | left | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 3 A> 2
4 0 3 <B 4
5 1 4 B> 4
6 0 4 <B 2
7 -1 <B 2 2
8 -2 <A 23
9 -1 1 B> 23
+ 12 2 1 43 B>
13 1 1 43 <A 2
+ 16 -2 1 <A 33 2
17 -1 3 A> 33 2
+ 20 2 3 23 A> 2
21 1 3 23 <B 4
22 2 3 2 2 4 B> 4
23 1 3 2 2 4 <B 2
24 0 3 2 2 <B 2 2
25 1 3 2 4 B> 2 2
+ 27 3 3 2 43 B>
28 2 3 2 43 <A 2
+ 31 -1 3 2 <A 33 2
32 -2 3 <B 4 33 2
33 -1 4 B> 4 33 2
34 -2 4 <B 2 33 2
35 -3 <B 2 2 33 2
36 -4 <A 23 33 2
37 -3 1 B> 23 33 2
+ 40 0 1 43 B> 33 2
+ 43 3 1 46 B> 2
44 4 1 47 B>
45 3 1 47 <A 2
+ 52 -4 1 <A 37 2
53 -3 3 A> 37 2
+ 60 4 3 27 A> 2
61 3 3 27 <B 4
62 4 3 26 4 B> 4
63 3 3 26 4 <B 2
64 2 3 26 <B 2 2
65 3 3 25 4 B> 2 2
+ 67 5 3 25 43 B>
68 4 3 25 43 <A 2
+ 71 1 3 25 <A 33 2
72 0 3 24 <B 4 33 2
73 1 3 23 4 B> 4 33 2
74 0 3 23 4 <B 2 33 2
75 -1 3 23 <B 2 2 33 2
76 0 3 2 2 4 B> 2 2 33 2
+ 78 2 3 2 2 43 B> 33 2
+ 81 5 3 2 2 46 B> 2
82 6 3 2 2 47 B>
83 5 3 2 2 47 <A 2
+ 90 -2 3 2 2 <A 37 2
91 -3 3 2 <B 4 37 2
92 -2 3 4 B> 4 37 2
93 -3 3 4 <B 2 37 2
94 -4 3 <B 2 2 37 2
95 -3 4 B> 2 2 37 2
+ 97 -1 43 B> 37 2
+ 104 6 410 B> 2
105 7 411 B>
106 6 411 <A 2
+ 117 -5 <A 311 2
118 -4 1 B> 311 2
+ 129 7 1 411 B> 2
130 8 1 412 B>
131 7 1 412 <A 2
+ 143 -5 1 <A 312 2
144 -4 3 A> 312 2
+ 156 8 3 212 A> 2
157 7 3 212 <B 4
158 8 3 211 4 B> 4
159 7 3 211 4 <B 2
160 6 3 211 <B 2 2
161 7 3 210 4 B> 2 2
+ 163 9 3 210 43 B>
164 8 3 210 43 <A 2
+ 167 5 3 210 <A 33 2
168 4 3 29 <B 4 33 2
169 5 3 28 4 B> 4 33 2
170 4 3 28 4 <B 2 33 2
171 3 3 28 <B 2 2 33 2
172 4 3 27 4 B> 2 2 33 2
+ 174 6 3 27 43 B> 33 2
+ 177 9 3 27 46 B> 2
178 10 3 27 47 B>
179 9 3 27 47 <A 2
+ 186 2 3 27 <A 37 2
187 1 3 26 <B 4 37 2
188 2 3 25 4 B> 4 37 2
189 1 3 25 4 <B 2 37 2
190 0 3 25 <B 2 2 37 2
191 1 3 24 4 B> 2 2 37 2
+ 193 3 3 24 43 B> 37 2
+ 200 10 3 24 410 B> 2
201 11 3 24 411 B>
202 10 3 24 411 <A 2
+ 213 -1 3 24 <A 311 2
214 -2 3 23 <B 4 311 2
215 -1 3 2 2 4 B> 4 311 2
216 -2 3 2 2 4 <B 2 311 2
217 -3 3 2 2 <B 2 2 311 2
218 -2 3 2 4 B> 2 2 311 2
+ 220 0 3 2 43 B> 311 2
+ 231 11 3 2 414 B> 2
232 12 3 2 415 B>
233 11 3 2 415 <A 2
+ 248 -4 3 2 <A 315 2
249 -5 3 <B 4 315 2
250 -4 4 B> 4 315 2
251 -5 4 <B 2 315 2
252 -6 <B 2 2 315 2
253 -7 <A 23 315 2
254 -6 1 B> 23 315 2
+ 257 -3 1 43 B> 315 2
+ 272 12 1 418 B> 2
273 13 1 419 B>
274 12 1 419 <A 2
+ 293 -7 1 <A 319 2
294 -6 3 A> 319 2
+ 313 13 3 219 A> 2
314 12 3 219 <B 4
315 13 3 218 4 B> 4
316 12 3 218 4 <B 2
317 11 3 218 <B 2 2
318 12 3 217 4 B> 2 2
+ 320 14 3 217 43 B>
321 13 3 217 43 <A 2
+ 324 10 3 217 <A 33 2
325 9 3 216 <B 4 33 2
326 10 3 215 4 B> 4 33 2
327 9 3 215 4 <B 2 33 2
328 8 3 215 <B 2 2 33 2
329 9 3 214 4 B> 2 2 33 2
+ 331 11 3 214 43 B> 33 2
+ 334 14 3 214 46 B> 2
335 15 3 214 47 B>
336 14 3 214 47 <A 2
+ 343 7 3 214 <A 37 2
344 6 3 213 <B 4 37 2
345 7 3 212 4 B> 4 37 2
346 6 3 212 4 <B 2 37 2
347 5 3 212 <B 2 2 37 2
348 6 3 211 4 B> 2 2 37 2
+ 350 8 3 211 43 B> 37 2
+ 357 15 3 211 410 B> 2
358 16 3 211 411 B>
359 15 3 211 411 <A 2
+ 370 4 3 211 <A 311 2
371 3 3 210 <B 4 311 2
372 4 3 29 4 B> 4 311 2
373 3 3 29 4 <B 2 311 2
374 2 3 29 <B 2 2 311 2
375 3 3 28 4 B> 2 2 311 2
+ 377 5 3 28 43 B> 311 2
+ 388 16 3 28 414 B> 2
389 17 3 28 415 B>
390 16 3 28 415 <A 2
+ 405 1 3 28 <A 315 2
406 0 3 27 <B 4 315 2
407 1 3 26 4 B> 4 315 2
408 0 3 26 4 <B 2 315 2
409 -1 3 26 <B 2 2 315 2
410 0 3 25 4 B> 2 2 315 2
+ 412 2 3 25 43 B> 315 2
+ 427 17 3 25 418 B> 2
428 18 3 25 419 B>
429 17 3 25 419 <A 2
+ 448 -2 3 25 <A 319 2
449 -3 3 24 <B 4 319 2
450 -2 3 23 4 B> 4 319 2
451 -3 3 23 4 <B 2 319 2
452 -4 3 23 <B 2 2 319 2
453 -3 3 2 2 4 B> 2 2 319 2
+ 455 -1 3 2 2 43 B> 319 2
+ 474 18 3 2 2 422 B> 2
475 19 3 2 2 423 B>
476 18 3 2 2 423 <A 2
+ 499 -5 3 2 2 <A 323 2
500 -6 3 2 <B 4 323 2
501 -5 3 4 B> 4 323 2
502 -6 3 4 <B 2 323 2
503 -7 3 <B 2 2 323 2
504 -6 4 B> 2 2 323 2
+ 506 -4 43 B> 323 2
+ 529 19 426 B> 2
530 20 427 B>
531 19 427 <A 2
+ 558 -8 <A 327 2
559 -7 1 B> 327 2
+ 586 20 1 427 B> 2
587 21 1 428 B>
588 20 1 428 <A 2
+ 616 -8 1 <A 328 2
617 -7 3 A> 328 2
+ 645 21 3 228 A> 2
646 20 3 228 <B 4
647 21 3 227 4 B> 4
648 20 3 227 4 <B 2
649 19 3 227 <B 2 2
After 649 steps (201 lines): state = B.
Produced 30 nonzeros.
Tape index 19, scanned [-8 .. 21].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 334 | 6 | 6 | 19 | 69 | 234 | 0 | 2 | 3 | 17 | 13 |
| B | 315 | 24 | 83 | 170 | 38 | 1 | 9 | 4 | 5 | ||