2-state 5-symbol TM #h (G. Lafitte & C. Papazian)

Comment: This TM produces 2,576,467 nonzeros in 3,793,261,759,791 steps.
Comment: Same result with B4->B3L

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R B4L A2R A3L 1 right B 3 right A 4 left B 2 right A 3 left A
B A2L Z2L B4R B4R B2L 2 left A 2 left Z 4 right B 4 right B 2 left B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  3 A> 2
     4     0  3 <B 4
     5     1  4 B> 4
     6     0  4 <B 2
     7    -1  <B 2 2
     8    -2  <A 23
     9    -1  1 B> 23
+   12     2  1 43 B>
    13     1  1 43 <A 2
+   16    -2  1 <A 33 2
    17    -1  3 A> 33 2
+   20     2  3 23 A> 2
    21     1  3 23 <B 4
    22     2  3 2 2 4 B> 4
    23     1  3 2 2 4 <B 2
    24     0  3 2 2 <B 2 2
    25     1  3 2 4 B> 2 2
+   27     3  3 2 43 B>
    28     2  3 2 43 <A 2
+   31    -1  3 2 <A 33 2
    32    -2  3 <B 4 33 2
    33    -1  4 B> 4 33 2
    34    -2  4 <B 2 33 2
    35    -3  <B 2 2 33 2
    36    -4  <A 23 33 2
    37    -3  1 B> 23 33 2
+   40     0  1 43 B> 33 2
+   43     3  1 46 B> 2
    44     4  1 47 B>
    45     3  1 47 <A 2
+   52    -4  1 <A 37 2
    53    -3  3 A> 37 2
+   60     4  3 27 A> 2
    61     3  3 27 <B 4
    62     4  3 26 4 B> 4
    63     3  3 26 4 <B 2
    64     2  3 26 <B 2 2
    65     3  3 25 4 B> 2 2
+   67     5  3 25 43 B>
    68     4  3 25 43 <A 2
+   71     1  3 25 <A 33 2
    72     0  3 24 <B 4 33 2
    73     1  3 23 4 B> 4 33 2
    74     0  3 23 4 <B 2 33 2
    75    -1  3 23 <B 2 2 33 2
    76     0  3 2 2 4 B> 2 2 33 2
+   78     2  3 2 2 43 B> 33 2
+   81     5  3 2 2 46 B> 2
    82     6  3 2 2 47 B>
    83     5  3 2 2 47 <A 2
+   90    -2  3 2 2 <A 37 2
    91    -3  3 2 <B 4 37 2
    92    -2  3 4 B> 4 37 2
    93    -3  3 4 <B 2 37 2
    94    -4  3 <B 2 2 37 2
    95    -3  4 B> 2 2 37 2
+   97    -1  43 B> 37 2
+  104     6  410 B> 2
   105     7  411 B>
   106     6  411 <A 2
+  117    -5  <A 311 2
   118    -4  1 B> 311 2
+  129     7  1 411 B> 2
   130     8  1 412 B>
   131     7  1 412 <A 2
+  143    -5  1 <A 312 2
   144    -4  3 A> 312 2
+  156     8  3 212 A> 2
   157     7  3 212 <B 4
   158     8  3 211 4 B> 4
   159     7  3 211 4 <B 2
   160     6  3 211 <B 2 2
   161     7  3 210 4 B> 2 2
+  163     9  3 210 43 B>
   164     8  3 210 43 <A 2
+  167     5  3 210 <A 33 2
   168     4  3 29 <B 4 33 2
   169     5  3 28 4 B> 4 33 2
   170     4  3 28 4 <B 2 33 2
   171     3  3 28 <B 2 2 33 2
   172     4  3 27 4 B> 2 2 33 2
+  174     6  3 27 43 B> 33 2
+  177     9  3 27 46 B> 2
   178    10  3 27 47 B>
   179     9  3 27 47 <A 2
+  186     2  3 27 <A 37 2
   187     1  3 26 <B 4 37 2
   188     2  3 25 4 B> 4 37 2
   189     1  3 25 4 <B 2 37 2
   190     0  3 25 <B 2 2 37 2
   191     1  3 24 4 B> 2 2 37 2
+  193     3  3 24 43 B> 37 2
+  200    10  3 24 410 B> 2
   201    11  3 24 411 B>
   202    10  3 24 411 <A 2
+  213    -1  3 24 <A 311 2
   214    -2  3 23 <B 4 311 2
   215    -1  3 2 2 4 B> 4 311 2
   216    -2  3 2 2 4 <B 2 311 2
   217    -3  3 2 2 <B 2 2 311 2
   218    -2  3 2 4 B> 2 2 311 2
+  220     0  3 2 43 B> 311 2
+  231    11  3 2 414 B> 2
   232    12  3 2 415 B>
   233    11  3 2 415 <A 2
+  248    -4  3 2 <A 315 2
   249    -5  3 <B 4 315 2
   250    -4  4 B> 4 315 2
   251    -5  4 <B 2 315 2
   252    -6  <B 2 2 315 2
   253    -7  <A 23 315 2
   254    -6  1 B> 23 315 2
+  257    -3  1 43 B> 315 2
+  272    12  1 418 B> 2
   273    13  1 419 B>
   274    12  1 419 <A 2
+  293    -7  1 <A 319 2
   294    -6  3 A> 319 2
+  313    13  3 219 A> 2
   314    12  3 219 <B 4
   315    13  3 218 4 B> 4
   316    12  3 218 4 <B 2
   317    11  3 218 <B 2 2
   318    12  3 217 4 B> 2 2
+  320    14  3 217 43 B>
   321    13  3 217 43 <A 2
+  324    10  3 217 <A 33 2
   325     9  3 216 <B 4 33 2
   326    10  3 215 4 B> 4 33 2
   327     9  3 215 4 <B 2 33 2
   328     8  3 215 <B 2 2 33 2
   329     9  3 214 4 B> 2 2 33 2
+  331    11  3 214 43 B> 33 2
+  334    14  3 214 46 B> 2
   335    15  3 214 47 B>
   336    14  3 214 47 <A 2
+  343     7  3 214 <A 37 2
   344     6  3 213 <B 4 37 2
   345     7  3 212 4 B> 4 37 2
   346     6  3 212 4 <B 2 37 2
   347     5  3 212 <B 2 2 37 2
   348     6  3 211 4 B> 2 2 37 2
+  350     8  3 211 43 B> 37 2
+  357    15  3 211 410 B> 2
   358    16  3 211 411 B>
   359    15  3 211 411 <A 2
+  370     4  3 211 <A 311 2
   371     3  3 210 <B 4 311 2
   372     4  3 29 4 B> 4 311 2
   373     3  3 29 4 <B 2 311 2
   374     2  3 29 <B 2 2 311 2
   375     3  3 28 4 B> 2 2 311 2
+  377     5  3 28 43 B> 311 2
+  388    16  3 28 414 B> 2
   389    17  3 28 415 B>
   390    16  3 28 415 <A 2
+  405     1  3 28 <A 315 2
   406     0  3 27 <B 4 315 2
   407     1  3 26 4 B> 4 315 2
   408     0  3 26 4 <B 2 315 2
   409    -1  3 26 <B 2 2 315 2
   410     0  3 25 4 B> 2 2 315 2
+  412     2  3 25 43 B> 315 2
+  427    17  3 25 418 B> 2
   428    18  3 25 419 B>
   429    17  3 25 419 <A 2
+  448    -2  3 25 <A 319 2
   449    -3  3 24 <B 4 319 2
   450    -2  3 23 4 B> 4 319 2
   451    -3  3 23 4 <B 2 319 2
   452    -4  3 23 <B 2 2 319 2
   453    -3  3 2 2 4 B> 2 2 319 2
+  455    -1  3 2 2 43 B> 319 2
+  474    18  3 2 2 422 B> 2
   475    19  3 2 2 423 B>
   476    18  3 2 2 423 <A 2
+  499    -5  3 2 2 <A 323 2
   500    -6  3 2 <B 4 323 2
   501    -5  3 4 B> 4 323 2
   502    -6  3 4 <B 2 323 2
   503    -7  3 <B 2 2 323 2
   504    -6  4 B> 2 2 323 2
+  506    -4  43 B> 323 2
+  529    19  426 B> 2
   530    20  427 B>
   531    19  427 <A 2
+  558    -8  <A 327 2
   559    -7  1 B> 327 2
+  586    20  1 427 B> 2
   587    21  1 428 B>
   588    20  1 428 <A 2
+  616    -8  1 <A 328 2
   617    -7  3 A> 328 2
+  645    21  3 228 A> 2
   646    20  3 228 <B 4
   647    21  3 227 4 B> 4
   648    20  3 227 4 <B 2
   649    19  3 227 <B 2 2

After 649 steps (201 lines): state = B.
Produced     30 nonzeros.
Tape index 19, scanned [-8 .. 21].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 334 6 6 19 69 234 0 2 3 17 13
B 315 24   83 170 38 1   9 4 5
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:04 CEST 2010