Comment: This TM produces 2,576,467 nonzeros in 3,793,261,759,791 steps. Comment: Same result with B4->B3L Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3R | B4L | A2R | A3L | 1 | right | B | 3 | right | A | 4 | left | B | 2 | right | A | 3 | left | A |
B | A2L | Z2L | B4R | B4R | B2L | 2 | left | A | 2 | left | Z | 4 | right | B | 4 | right | B | 2 | left | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as bck-macro machine. The same TM as bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 3 A> 2 4 0 3 <B 4 5 1 4 B> 4 6 0 4 <B 2 7 -1 <B 2 2 8 -2 <A 23 9 -1 1 B> 23 + 12 2 1 43 B> 13 1 1 43 <A 2 + 16 -2 1 <A 33 2 17 -1 3 A> 33 2 + 20 2 3 23 A> 2 21 1 3 23 <B 4 22 2 3 2 2 4 B> 4 23 1 3 2 2 4 <B 2 24 0 3 2 2 <B 2 2 25 1 3 2 4 B> 2 2 + 27 3 3 2 43 B> 28 2 3 2 43 <A 2 + 31 -1 3 2 <A 33 2 32 -2 3 <B 4 33 2 33 -1 4 B> 4 33 2 34 -2 4 <B 2 33 2 35 -3 <B 2 2 33 2 36 -4 <A 23 33 2 37 -3 1 B> 23 33 2 + 40 0 1 43 B> 33 2 + 43 3 1 46 B> 2 44 4 1 47 B> 45 3 1 47 <A 2 + 52 -4 1 <A 37 2 53 -3 3 A> 37 2 + 60 4 3 27 A> 2 61 3 3 27 <B 4 62 4 3 26 4 B> 4 63 3 3 26 4 <B 2 64 2 3 26 <B 2 2 65 3 3 25 4 B> 2 2 + 67 5 3 25 43 B> 68 4 3 25 43 <A 2 + 71 1 3 25 <A 33 2 72 0 3 24 <B 4 33 2 73 1 3 23 4 B> 4 33 2 74 0 3 23 4 <B 2 33 2 75 -1 3 23 <B 2 2 33 2 76 0 3 2 2 4 B> 2 2 33 2 + 78 2 3 2 2 43 B> 33 2 + 81 5 3 2 2 46 B> 2 82 6 3 2 2 47 B> 83 5 3 2 2 47 <A 2 + 90 -2 3 2 2 <A 37 2 91 -3 3 2 <B 4 37 2 92 -2 3 4 B> 4 37 2 93 -3 3 4 <B 2 37 2 94 -4 3 <B 2 2 37 2 95 -3 4 B> 2 2 37 2 + 97 -1 43 B> 37 2 + 104 6 410 B> 2 105 7 411 B> 106 6 411 <A 2 + 117 -5 <A 311 2 118 -4 1 B> 311 2 + 129 7 1 411 B> 2 130 8 1 412 B> 131 7 1 412 <A 2 + 143 -5 1 <A 312 2 144 -4 3 A> 312 2 + 156 8 3 212 A> 2 157 7 3 212 <B 4 158 8 3 211 4 B> 4 159 7 3 211 4 <B 2 160 6 3 211 <B 2 2 161 7 3 210 4 B> 2 2 + 163 9 3 210 43 B> 164 8 3 210 43 <A 2 + 167 5 3 210 <A 33 2 168 4 3 29 <B 4 33 2 169 5 3 28 4 B> 4 33 2 170 4 3 28 4 <B 2 33 2 171 3 3 28 <B 2 2 33 2 172 4 3 27 4 B> 2 2 33 2 + 174 6 3 27 43 B> 33 2 + 177 9 3 27 46 B> 2 178 10 3 27 47 B> 179 9 3 27 47 <A 2 + 186 2 3 27 <A 37 2 187 1 3 26 <B 4 37 2 188 2 3 25 4 B> 4 37 2 189 1 3 25 4 <B 2 37 2 190 0 3 25 <B 2 2 37 2 191 1 3 24 4 B> 2 2 37 2 + 193 3 3 24 43 B> 37 2 + 200 10 3 24 410 B> 2 201 11 3 24 411 B> 202 10 3 24 411 <A 2 + 213 -1 3 24 <A 311 2 214 -2 3 23 <B 4 311 2 215 -1 3 2 2 4 B> 4 311 2 216 -2 3 2 2 4 <B 2 311 2 217 -3 3 2 2 <B 2 2 311 2 218 -2 3 2 4 B> 2 2 311 2 + 220 0 3 2 43 B> 311 2 + 231 11 3 2 414 B> 2 232 12 3 2 415 B> 233 11 3 2 415 <A 2 + 248 -4 3 2 <A 315 2 249 -5 3 <B 4 315 2 250 -4 4 B> 4 315 2 251 -5 4 <B 2 315 2 252 -6 <B 2 2 315 2 253 -7 <A 23 315 2 254 -6 1 B> 23 315 2 + 257 -3 1 43 B> 315 2 + 272 12 1 418 B> 2 273 13 1 419 B> 274 12 1 419 <A 2 + 293 -7 1 <A 319 2 294 -6 3 A> 319 2 + 313 13 3 219 A> 2 314 12 3 219 <B 4 315 13 3 218 4 B> 4 316 12 3 218 4 <B 2 317 11 3 218 <B 2 2 318 12 3 217 4 B> 2 2 + 320 14 3 217 43 B> 321 13 3 217 43 <A 2 + 324 10 3 217 <A 33 2 325 9 3 216 <B 4 33 2 326 10 3 215 4 B> 4 33 2 327 9 3 215 4 <B 2 33 2 328 8 3 215 <B 2 2 33 2 329 9 3 214 4 B> 2 2 33 2 + 331 11 3 214 43 B> 33 2 + 334 14 3 214 46 B> 2 335 15 3 214 47 B> 336 14 3 214 47 <A 2 + 343 7 3 214 <A 37 2 344 6 3 213 <B 4 37 2 345 7 3 212 4 B> 4 37 2 346 6 3 212 4 <B 2 37 2 347 5 3 212 <B 2 2 37 2 348 6 3 211 4 B> 2 2 37 2 + 350 8 3 211 43 B> 37 2 + 357 15 3 211 410 B> 2 358 16 3 211 411 B> 359 15 3 211 411 <A 2 + 370 4 3 211 <A 311 2 371 3 3 210 <B 4 311 2 372 4 3 29 4 B> 4 311 2 373 3 3 29 4 <B 2 311 2 374 2 3 29 <B 2 2 311 2 375 3 3 28 4 B> 2 2 311 2 + 377 5 3 28 43 B> 311 2 + 388 16 3 28 414 B> 2 389 17 3 28 415 B> 390 16 3 28 415 <A 2 + 405 1 3 28 <A 315 2 406 0 3 27 <B 4 315 2 407 1 3 26 4 B> 4 315 2 408 0 3 26 4 <B 2 315 2 409 -1 3 26 <B 2 2 315 2 410 0 3 25 4 B> 2 2 315 2 + 412 2 3 25 43 B> 315 2 + 427 17 3 25 418 B> 2 428 18 3 25 419 B> 429 17 3 25 419 <A 2 + 448 -2 3 25 <A 319 2 449 -3 3 24 <B 4 319 2 450 -2 3 23 4 B> 4 319 2 451 -3 3 23 4 <B 2 319 2 452 -4 3 23 <B 2 2 319 2 453 -3 3 2 2 4 B> 2 2 319 2 + 455 -1 3 2 2 43 B> 319 2 + 474 18 3 2 2 422 B> 2 475 19 3 2 2 423 B> 476 18 3 2 2 423 <A 2 + 499 -5 3 2 2 <A 323 2 500 -6 3 2 <B 4 323 2 501 -5 3 4 B> 4 323 2 502 -6 3 4 <B 2 323 2 503 -7 3 <B 2 2 323 2 504 -6 4 B> 2 2 323 2 + 506 -4 43 B> 323 2 + 529 19 426 B> 2 530 20 427 B> 531 19 427 <A 2 + 558 -8 <A 327 2 559 -7 1 B> 327 2 + 586 20 1 427 B> 2 587 21 1 428 B> 588 20 1 428 <A 2 + 616 -8 1 <A 328 2 617 -7 3 A> 328 2 + 645 21 3 228 A> 2 646 20 3 228 <B 4 647 21 3 227 4 B> 4 648 20 3 227 4 <B 2 649 19 3 227 <B 2 2 After 649 steps (201 lines): state = B. Produced 30 nonzeros. Tape index 19, scanned [-8 .. 21].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 334 | 6 | 6 | 19 | 69 | 234 | 0 | 2 | 3 | 17 | 13 |
B | 315 | 24 | 83 | 170 | 38 | 1 | 9 | 4 | 5 |