2-state 5-symbol TM #f (G. Lafitte & C. Papazian)

Comment: This TM produces 1,957,771 nonzeros in 912,594,733,606 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B3L Z1R A1L A1L 1 right B 3 left B 1 right Z 1 left A 1 left A
B A2L B3R B4L B4L A3R 2 left A 3 right B 4 left B 4 left B 3 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3      -1  <B 3 2
    4        4      -2  <A 2 3 2
    5        5      -1  1 B> 2 3 2
    6        6      -2  1 <B 4 3 2
    7        7      -1  3 B> 4 3 2
    8        8       0  32 A> 3 2
    9        9      -1  32 <A 1 2
   10       11      -3  <A 13 2
   11       12      -2  1 B> 13 2
   12       15       1  1 33 B> 2
   13       16       0  1 33 <B 4
   14       19      -3  1 <B 44
   15       20      -2  3 B> 44
   16       21      -1  32 A> 43
   17       22      -2  32 <A 1 42
   18       24      -4  <A 13 42
   19       25      -3  1 B> 13 42
   20       28       0  1 33 B> 42
   21       29       1  1 34 A> 4
   22       30       0  1 34 <A 1
   23       34      -4  1 <A 15
   24       35      -5  <B 3 15
   25       36      -6  <A 2 3 15
   26       37      -5  1 B> 2 3 15
   27       38      -6  1 <B 4 3 15
   28       39      -5  3 B> 4 3 15
   29       40      -4  32 A> 3 15
   30       41      -5  32 <A 16
   31       43      -7  <A 18
   32       44      -6  1 B> 18
   33       52       2  1 38 B>
   34       53       1  1 38 <A 2
   35       61      -7  1 <A 18 2
   36       62      -8  <B 3 18 2
   37       63      -9  <A 2 3 18 2
   38       64      -8  1 B> 2 3 18 2
   39       65      -9  1 <B 4 3 18 2
   40       66      -8  3 B> 4 3 18 2
   41       67      -7  32 A> 3 18 2
   42       68      -8  32 <A 19 2
   43       70     -10  <A 111 2
   44       71      -9  1 B> 111 2
   45       82       2  1 311 B> 2
   46       83       1  1 311 <B 4
   47       94     -10  1 <B 412
   48       95      -9  3 B> 412
   49       96      -8  32 A> 411
   50       97      -9  32 <A 1 410
   51       99     -11  <A 13 410
   52      100     -10  1 B> 13 410
   53      103      -7  1 33 B> 410
   54      104      -6  1 34 A> 49
   55      105      -7  1 34 <A 1 48
   56      109     -11  1 <A 15 48
   57      110     -12  <B 3 15 48
   58      111     -13  <A 2 3 15 48
   59      112     -12  1 B> 2 3 15 48
   60      113     -13  1 <B 4 3 15 48
   61      114     -12  3 B> 4 3 15 48
   62      115     -11  32 A> 3 15 48
   63      116     -12  32 <A 16 48
   64      118     -14  <A 18 48
   65      119     -13  1 B> 18 48
   66      127      -5  1 38 B> 48
   67      128      -4  1 39 A> 47
   68      129      -5  1 39 <A 1 46
   69      138     -14  1 <A 110 46
   70      139     -15  <B 3 110 46
   71      140     -16  <A 2 3 110 46
   72      141     -15  1 B> 2 3 110 46
   73      142     -16  1 <B 4 3 110 46
   74      143     -15  3 B> 4 3 110 46
   75      144     -14  32 A> 3 110 46
   76      145     -15  32 <A 111 46
   77      147     -17  <A 113 46
   78      148     -16  1 B> 113 46
   79      161      -3  1 313 B> 46
   80      162      -2  1 314 A> 45
   81      163      -3  1 314 <A 1 44
   82      177     -17  1 <A 115 44
   83      178     -18  <B 3 115 44
   84      179     -19  <A 2 3 115 44
   85      180     -18  1 B> 2 3 115 44
   86      181     -19  1 <B 4 3 115 44
   87      182     -18  3 B> 4 3 115 44
   88      183     -17  32 A> 3 115 44
   89      184     -18  32 <A 116 44
   90      186     -20  <A 118 44
   91      187     -19  1 B> 118 44
   92      205      -1  1 318 B> 44
   93      206       0  1 319 A> 43
   94      207      -1  1 319 <A 1 42
   95      226     -20  1 <A 120 42
   96      227     -21  <B 3 120 42
   97      228     -22  <A 2 3 120 42
   98      229     -21  1 B> 2 3 120 42
   99      230     -22  1 <B 4 3 120 42
  100      231     -21  3 B> 4 3 120 42
  101      232     -20  32 A> 3 120 42
  102      233     -21  32 <A 121 42
  103      235     -23  <A 123 42
  104      236     -22  1 B> 123 42
  105      259       1  1 323 B> 42
  106      260       2  1 324 A> 4
  107      261       1  1 324 <A 1
  108      285     -23  1 <A 125
  109      286     -24  <B 3 125
  110      287     -25  <A 2 3 125
  111      288     -24  1 B> 2 3 125
  112      289     -25  1 <B 4 3 125
  113      290     -24  3 B> 4 3 125
  114      291     -23  32 A> 3 125
  115      292     -24  32 <A 126
  116      294     -26  <A 128
  117      295     -25  1 B> 128
  118      323       3  1 328 B>
  119      324       2  1 328 <A 2
  120      352     -26  1 <A 128 2
  121      353     -27  <B 3 128 2
  122      354     -28  <A 2 3 128 2
  123      355     -27  1 B> 2 3 128 2
  124      356     -28  1 <B 4 3 128 2
  125      357     -27  3 B> 4 3 128 2
  126      358     -26  32 A> 3 128 2
  127      359     -27  32 <A 129 2
  128      361     -29  <A 131 2
  129      362     -28  1 B> 131 2
  130      393       3  1 331 B> 2
  131      394       2  1 331 <B 4
  132      425     -29  1 <B 432
  133      426     -28  3 B> 432
  134      427     -27  32 A> 431
  135      428     -28  32 <A 1 430
  136      430     -30  <A 13 430
  137      431     -29  1 B> 13 430
  138      434     -26  1 33 B> 430
  139      435     -25  1 34 A> 429
  140      436     -26  1 34 <A 1 428
  141      440     -30  1 <A 15 428
  142      441     -31  <B 3 15 428
  143      442     -32  <A 2 3 15 428
  144      443     -31  1 B> 2 3 15 428
  145      444     -32  1 <B 4 3 15 428
  146      445     -31  3 B> 4 3 15 428
  147      446     -30  32 A> 3 15 428
  148      447     -31  32 <A 16 428
  149      449     -33  <A 18 428
  150      450     -32  1 B> 18 428
  151      458     -24  1 38 B> 428
  152      459     -23  1 39 A> 427
  153      460     -24  1 39 <A 1 426
  154      469     -33  1 <A 110 426
  155      470     -34  <B 3 110 426
  156      471     -35  <A 2 3 110 426
  157      472     -34  1 B> 2 3 110 426
  158      473     -35  1 <B 4 3 110 426
  159      474     -34  3 B> 4 3 110 426
  160      475     -33  32 A> 3 110 426
  161      476     -34  32 <A 111 426
  162      478     -36  <A 113 426
  163      479     -35  1 B> 113 426
  164      492     -22  1 313 B> 426
  165      493     -21  1 314 A> 425
  166      494     -22  1 314 <A 1 424
  167      508     -36  1 <A 115 424
  168      509     -37  <B 3 115 424
  169      510     -38  <A 2 3 115 424
  170      511     -37  1 B> 2 3 115 424
  171      512     -38  1 <B 4 3 115 424
  172      513     -37  3 B> 4 3 115 424
  173      514     -36  32 A> 3 115 424
  174      515     -37  32 <A 116 424
  175      517     -39  <A 118 424
  176      518     -38  1 B> 118 424
  177      536     -20  1 318 B> 424
  178      537     -19  1 319 A> 423
  179      538     -20  1 319 <A 1 422
  180      557     -39  1 <A 120 422
  181      558     -40  <B 3 120 422
  182      559     -41  <A 2 3 120 422
  183      560     -40  1 B> 2 3 120 422
  184      561     -41  1 <B 4 3 120 422
  185      562     -40  3 B> 4 3 120 422
  186      563     -39  32 A> 3 120 422
  187      564     -40  32 <A 121 422
  188      566     -42  <A 123 422
  189      567     -41  1 B> 123 422
  190      590     -18  1 323 B> 422
  191      591     -17  1 324 A> 421
  192      592     -18  1 324 <A 1 420
  193      616     -42  1 <A 125 420
  194      617     -43  <B 3 125 420
  195      618     -44  <A 2 3 125 420
  196      619     -43  1 B> 2 3 125 420
  197      620     -44  1 <B 4 3 125 420
  198      621     -43  3 B> 4 3 125 420
  199      622     -42  32 A> 3 125 420
  200      623     -43  32 <A 126 420

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 623
Tape index:  -43
nonzeros:    48
log10(nonzeros):    1.681
log10(steps   ):    2.794

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #f (G. Lafitte & C. Papazian)
    5T  B1R B3L Z1R A1L A1L  A2L B3R B4L B4L A3R
    : 1,957,771 912,594,733,606 
    L 48
    M	201
    pref	sim
    machv Laf25_f  	just simple
    machv Laf25_f-r	with repetitions reduced
    machv Laf25_f-1	with tape symbol exponents
    machv Laf25_f-m	as 1-macro machine
    machv Laf25_f-a	as 1-macro machine with pure additive config-TRs
    iam	Laf25_f-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:02 CEST 2010
    edate	Tue Jul  6 22:12:02 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:02 CEST 2010
Ready: Tue Jul 6 22:12:02 CEST 2010