2-state 5-symbol TM #f (G. Lafitte & C. Papazian)

Comment: This TM produces 1,957,771 nonzeros in 912,594,733,606 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B3L Z1R A1L A1L 1 right B 3 left B 1 right Z 1 left A 1 left A
B A2L B3R B4L B4L A3R 2 left A 3 right B 4 left B 4 left B 3 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3    -1  <B 3 2
     4    -2  <A 2 3 2
     5    -1  1 B> 2 3 2
     6    -2  1 <B 4 3 2
     7    -1  3 B> 4 3 2
     8     0  3 3 A> 3 2
     9    -1  3 3 <A 1 2
+   11    -3  <A 13 2
    12    -2  1 B> 13 2
+   15     1  1 33 B> 2
    16     0  1 33 <B 4
+   19    -3  1 <B 44
    20    -2  3 B> 44
    21    -1  3 3 A> 43
    22    -2  3 3 <A 1 4 4
+   24    -4  <A 13 4 4
    25    -3  1 B> 13 4 4
+   28     0  1 33 B> 4 4
    29     1  1 34 A> 4
    30     0  1 34 <A 1
+   34    -4  1 <A 15
    35    -5  <B 3 15
    36    -6  <A 2 3 15
    37    -5  1 B> 2 3 15
    38    -6  1 <B 4 3 15
    39    -5  3 B> 4 3 15
    40    -4  3 3 A> 3 15
    41    -5  3 3 <A 16
+   43    -7  <A 18
    44    -6  1 B> 18
+   52     2  1 38 B>
    53     1  1 38 <A 2
+   61    -7  1 <A 18 2
    62    -8  <B 3 18 2
    63    -9  <A 2 3 18 2
    64    -8  1 B> 2 3 18 2
    65    -9  1 <B 4 3 18 2
    66    -8  3 B> 4 3 18 2
    67    -7  3 3 A> 3 18 2
    68    -8  3 3 <A 19 2
+   70   -10  <A 111 2
    71    -9  1 B> 111 2
+   82     2  1 311 B> 2
    83     1  1 311 <B 4
+   94   -10  1 <B 412
    95    -9  3 B> 412
    96    -8  3 3 A> 411
    97    -9  3 3 <A 1 410
+   99   -11  <A 13 410
   100   -10  1 B> 13 410
+  103    -7  1 33 B> 410
   104    -6  1 34 A> 49
   105    -7  1 34 <A 1 48
+  109   -11  1 <A 15 48
   110   -12  <B 3 15 48
   111   -13  <A 2 3 15 48
   112   -12  1 B> 2 3 15 48
   113   -13  1 <B 4 3 15 48
   114   -12  3 B> 4 3 15 48
   115   -11  3 3 A> 3 15 48
   116   -12  3 3 <A 16 48
+  118   -14  <A 18 48
   119   -13  1 B> 18 48
+  127    -5  1 38 B> 48
   128    -4  1 39 A> 47
   129    -5  1 39 <A 1 46
+  138   -14  1 <A 110 46
   139   -15  <B 3 110 46
   140   -16  <A 2 3 110 46
   141   -15  1 B> 2 3 110 46
   142   -16  1 <B 4 3 110 46
   143   -15  3 B> 4 3 110 46
   144   -14  3 3 A> 3 110 46
   145   -15  3 3 <A 111 46
+  147   -17  <A 113 46
   148   -16  1 B> 113 46
+  161    -3  1 313 B> 46
   162    -2  1 314 A> 45
   163    -3  1 314 <A 1 44
+  177   -17  1 <A 115 44
   178   -18  <B 3 115 44
   179   -19  <A 2 3 115 44
   180   -18  1 B> 2 3 115 44
   181   -19  1 <B 4 3 115 44
   182   -18  3 B> 4 3 115 44
   183   -17  3 3 A> 3 115 44
   184   -18  3 3 <A 116 44
+  186   -20  <A 118 44
   187   -19  1 B> 118 44
+  205    -1  1 318 B> 44
   206     0  1 319 A> 43
   207    -1  1 319 <A 1 4 4
+  226   -20  1 <A 120 4 4
   227   -21  <B 3 120 4 4
   228   -22  <A 2 3 120 4 4
   229   -21  1 B> 2 3 120 4 4
   230   -22  1 <B 4 3 120 4 4
   231   -21  3 B> 4 3 120 4 4
   232   -20  3 3 A> 3 120 4 4
   233   -21  3 3 <A 121 4 4
+  235   -23  <A 123 4 4
   236   -22  1 B> 123 4 4
+  259     1  1 323 B> 4 4
   260     2  1 324 A> 4
   261     1  1 324 <A 1
+  285   -23  1 <A 125
   286   -24  <B 3 125
   287   -25  <A 2 3 125
   288   -24  1 B> 2 3 125
   289   -25  1 <B 4 3 125
   290   -24  3 B> 4 3 125
   291   -23  3 3 A> 3 125
   292   -24  3 3 <A 126
+  294   -26  <A 128
   295   -25  1 B> 128
+  323     3  1 328 B>
   324     2  1 328 <A 2
+  352   -26  1 <A 128 2
   353   -27  <B 3 128 2
   354   -28  <A 2 3 128 2
   355   -27  1 B> 2 3 128 2
   356   -28  1 <B 4 3 128 2
   357   -27  3 B> 4 3 128 2
   358   -26  3 3 A> 3 128 2
   359   -27  3 3 <A 129 2
+  361   -29  <A 131 2
   362   -28  1 B> 131 2
+  393     3  1 331 B> 2
   394     2  1 331 <B 4
+  425   -29  1 <B 432
   426   -28  3 B> 432
   427   -27  3 3 A> 431
   428   -28  3 3 <A 1 430
+  430   -30  <A 13 430
   431   -29  1 B> 13 430
+  434   -26  1 33 B> 430
   435   -25  1 34 A> 429
   436   -26  1 34 <A 1 428
+  440   -30  1 <A 15 428
   441   -31  <B 3 15 428
   442   -32  <A 2 3 15 428
   443   -31  1 B> 2 3 15 428
   444   -32  1 <B 4 3 15 428
   445   -31  3 B> 4 3 15 428
   446   -30  3 3 A> 3 15 428
   447   -31  3 3 <A 16 428
+  449   -33  <A 18 428
   450   -32  1 B> 18 428
+  458   -24  1 38 B> 428
   459   -23  1 39 A> 427
   460   -24  1 39 <A 1 426
+  469   -33  1 <A 110 426
   470   -34  <B 3 110 426
   471   -35  <A 2 3 110 426
   472   -34  1 B> 2 3 110 426
   473   -35  1 <B 4 3 110 426
   474   -34  3 B> 4 3 110 426
   475   -33  3 3 A> 3 110 426
   476   -34  3 3 <A 111 426
+  478   -36  <A 113 426
   479   -35  1 B> 113 426
+  492   -22  1 313 B> 426
   493   -21  1 314 A> 425
   494   -22  1 314 <A 1 424
+  508   -36  1 <A 115 424
   509   -37  <B 3 115 424
   510   -38  <A 2 3 115 424
   511   -37  1 B> 2 3 115 424
   512   -38  1 <B 4 3 115 424
   513   -37  3 B> 4 3 115 424
   514   -36  3 3 A> 3 115 424
   515   -37  3 3 <A 116 424
+  517   -39  <A 118 424
   518   -38  1 B> 118 424
+  536   -20  1 318 B> 424
   537   -19  1 319 A> 423
   538   -20  1 319 <A 1 422
+  557   -39  1 <A 120 422
   558   -40  <B 3 120 422
   559   -41  <A 2 3 120 422
   560   -40  1 B> 2 3 120 422
   561   -41  1 <B 4 3 120 422
   562   -40  3 B> 4 3 120 422
   563   -39  3 3 A> 3 120 422
   564   -40  3 3 <A 121 422
+  566   -42  <A 123 422
   567   -41  1 B> 123 422
+  590   -18  1 323 B> 422
   591   -17  1 324 A> 421
   592   -18  1 324 <A 1 420
+  616   -42  1 <A 125 420
   617   -43  <B 3 125 420
   618   -44  <A 2 3 125 420
   619   -43  1 B> 2 3 125 420
   620   -44  1 <B 4 3 125 420
   621   -43  3 B> 4 3 125 420
   622   -42  3 3 A> 3 125 420
   623   -43  3 3 <A 126 420

After 623 steps (201 lines): state = A.
Produced     48 nonzeros.
Tape index -43, scanned [-44 .. 3].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 285 31 14   226 14 0 2   8 21
B 338 17 231 17 45 28 1 6 5 16 7
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:02 CEST 2010