Comment: This TM produces 1,957,771 nonzeros in 912,594,733,606 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B3L | Z1R | A1L | A1L | 1 | right | B | 3 | left | B | 1 | right | Z | 1 | left | A | 1 | left | A |
| B | A2L | B3R | B4L | B4L | A3R | 2 | left | A | 3 | right | B | 4 | left | B | 4 | left | B | 3 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 -1 <B 3 2
4 -2 <A 2 3 2
5 -1 1 B> 2 3 2
6 -2 1 <B 4 3 2
7 -1 3 B> 4 3 2
8 0 3 3 A> 3 2
9 -1 3 3 <A 1 2
+ 11 -3 <A 13 2
12 -2 1 B> 13 2
+ 15 1 1 33 B> 2
16 0 1 33 <B 4
+ 19 -3 1 <B 44
20 -2 3 B> 44
21 -1 3 3 A> 43
22 -2 3 3 <A 1 4 4
+ 24 -4 <A 13 4 4
25 -3 1 B> 13 4 4
+ 28 0 1 33 B> 4 4
29 1 1 34 A> 4
30 0 1 34 <A 1
+ 34 -4 1 <A 15
35 -5 <B 3 15
36 -6 <A 2 3 15
37 -5 1 B> 2 3 15
38 -6 1 <B 4 3 15
39 -5 3 B> 4 3 15
40 -4 3 3 A> 3 15
41 -5 3 3 <A 16
+ 43 -7 <A 18
44 -6 1 B> 18
+ 52 2 1 38 B>
53 1 1 38 <A 2
+ 61 -7 1 <A 18 2
62 -8 <B 3 18 2
63 -9 <A 2 3 18 2
64 -8 1 B> 2 3 18 2
65 -9 1 <B 4 3 18 2
66 -8 3 B> 4 3 18 2
67 -7 3 3 A> 3 18 2
68 -8 3 3 <A 19 2
+ 70 -10 <A 111 2
71 -9 1 B> 111 2
+ 82 2 1 311 B> 2
83 1 1 311 <B 4
+ 94 -10 1 <B 412
95 -9 3 B> 412
96 -8 3 3 A> 411
97 -9 3 3 <A 1 410
+ 99 -11 <A 13 410
100 -10 1 B> 13 410
+ 103 -7 1 33 B> 410
104 -6 1 34 A> 49
105 -7 1 34 <A 1 48
+ 109 -11 1 <A 15 48
110 -12 <B 3 15 48
111 -13 <A 2 3 15 48
112 -12 1 B> 2 3 15 48
113 -13 1 <B 4 3 15 48
114 -12 3 B> 4 3 15 48
115 -11 3 3 A> 3 15 48
116 -12 3 3 <A 16 48
+ 118 -14 <A 18 48
119 -13 1 B> 18 48
+ 127 -5 1 38 B> 48
128 -4 1 39 A> 47
129 -5 1 39 <A 1 46
+ 138 -14 1 <A 110 46
139 -15 <B 3 110 46
140 -16 <A 2 3 110 46
141 -15 1 B> 2 3 110 46
142 -16 1 <B 4 3 110 46
143 -15 3 B> 4 3 110 46
144 -14 3 3 A> 3 110 46
145 -15 3 3 <A 111 46
+ 147 -17 <A 113 46
148 -16 1 B> 113 46
+ 161 -3 1 313 B> 46
162 -2 1 314 A> 45
163 -3 1 314 <A 1 44
+ 177 -17 1 <A 115 44
178 -18 <B 3 115 44
179 -19 <A 2 3 115 44
180 -18 1 B> 2 3 115 44
181 -19 1 <B 4 3 115 44
182 -18 3 B> 4 3 115 44
183 -17 3 3 A> 3 115 44
184 -18 3 3 <A 116 44
+ 186 -20 <A 118 44
187 -19 1 B> 118 44
+ 205 -1 1 318 B> 44
206 0 1 319 A> 43
207 -1 1 319 <A 1 4 4
+ 226 -20 1 <A 120 4 4
227 -21 <B 3 120 4 4
228 -22 <A 2 3 120 4 4
229 -21 1 B> 2 3 120 4 4
230 -22 1 <B 4 3 120 4 4
231 -21 3 B> 4 3 120 4 4
232 -20 3 3 A> 3 120 4 4
233 -21 3 3 <A 121 4 4
+ 235 -23 <A 123 4 4
236 -22 1 B> 123 4 4
+ 259 1 1 323 B> 4 4
260 2 1 324 A> 4
261 1 1 324 <A 1
+ 285 -23 1 <A 125
286 -24 <B 3 125
287 -25 <A 2 3 125
288 -24 1 B> 2 3 125
289 -25 1 <B 4 3 125
290 -24 3 B> 4 3 125
291 -23 3 3 A> 3 125
292 -24 3 3 <A 126
+ 294 -26 <A 128
295 -25 1 B> 128
+ 323 3 1 328 B>
324 2 1 328 <A 2
+ 352 -26 1 <A 128 2
353 -27 <B 3 128 2
354 -28 <A 2 3 128 2
355 -27 1 B> 2 3 128 2
356 -28 1 <B 4 3 128 2
357 -27 3 B> 4 3 128 2
358 -26 3 3 A> 3 128 2
359 -27 3 3 <A 129 2
+ 361 -29 <A 131 2
362 -28 1 B> 131 2
+ 393 3 1 331 B> 2
394 2 1 331 <B 4
+ 425 -29 1 <B 432
426 -28 3 B> 432
427 -27 3 3 A> 431
428 -28 3 3 <A 1 430
+ 430 -30 <A 13 430
431 -29 1 B> 13 430
+ 434 -26 1 33 B> 430
435 -25 1 34 A> 429
436 -26 1 34 <A 1 428
+ 440 -30 1 <A 15 428
441 -31 <B 3 15 428
442 -32 <A 2 3 15 428
443 -31 1 B> 2 3 15 428
444 -32 1 <B 4 3 15 428
445 -31 3 B> 4 3 15 428
446 -30 3 3 A> 3 15 428
447 -31 3 3 <A 16 428
+ 449 -33 <A 18 428
450 -32 1 B> 18 428
+ 458 -24 1 38 B> 428
459 -23 1 39 A> 427
460 -24 1 39 <A 1 426
+ 469 -33 1 <A 110 426
470 -34 <B 3 110 426
471 -35 <A 2 3 110 426
472 -34 1 B> 2 3 110 426
473 -35 1 <B 4 3 110 426
474 -34 3 B> 4 3 110 426
475 -33 3 3 A> 3 110 426
476 -34 3 3 <A 111 426
+ 478 -36 <A 113 426
479 -35 1 B> 113 426
+ 492 -22 1 313 B> 426
493 -21 1 314 A> 425
494 -22 1 314 <A 1 424
+ 508 -36 1 <A 115 424
509 -37 <B 3 115 424
510 -38 <A 2 3 115 424
511 -37 1 B> 2 3 115 424
512 -38 1 <B 4 3 115 424
513 -37 3 B> 4 3 115 424
514 -36 3 3 A> 3 115 424
515 -37 3 3 <A 116 424
+ 517 -39 <A 118 424
518 -38 1 B> 118 424
+ 536 -20 1 318 B> 424
537 -19 1 319 A> 423
538 -20 1 319 <A 1 422
+ 557 -39 1 <A 120 422
558 -40 <B 3 120 422
559 -41 <A 2 3 120 422
560 -40 1 B> 2 3 120 422
561 -41 1 <B 4 3 120 422
562 -40 3 B> 4 3 120 422
563 -39 3 3 A> 3 120 422
564 -40 3 3 <A 121 422
+ 566 -42 <A 123 422
567 -41 1 B> 123 422
+ 590 -18 1 323 B> 422
591 -17 1 324 A> 421
592 -18 1 324 <A 1 420
+ 616 -42 1 <A 125 420
617 -43 <B 3 125 420
618 -44 <A 2 3 125 420
619 -43 1 B> 2 3 125 420
620 -44 1 <B 4 3 125 420
621 -43 3 B> 4 3 125 420
622 -42 3 3 A> 3 125 420
623 -43 3 3 <A 126 420
After 623 steps (201 lines): state = A.
Produced 48 nonzeros.
Tape index -43, scanned [-44 .. 3].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 285 | 31 | 14 | 226 | 14 | 0 | 2 | 8 | 21 | ||
| B | 338 | 17 | 231 | 17 | 45 | 28 | 1 | 6 | 5 | 16 | 7 |