Comment: This TM produces 1,957,771 nonzeros in 912,594,733,606 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B3L | Z1R | A1L | A1L | 1 | right | B | 3 | left | B | 1 | right | Z | 1 | left | A | 1 | left | A |
B | A2L | B3R | B4L | B4L | A3R | 2 | left | A | 3 | right | B | 4 | left | B | 4 | left | B | 3 | right | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 -1 <B 3 2 4 -2 <A 2 3 2 5 -1 1 B> 2 3 2 6 -2 1 <B 4 3 2 7 -1 3 B> 4 3 2 8 0 3 3 A> 3 2 9 -1 3 3 <A 1 2 + 11 -3 <A 13 2 12 -2 1 B> 13 2 + 15 1 1 33 B> 2 16 0 1 33 <B 4 + 19 -3 1 <B 44 20 -2 3 B> 44 21 -1 3 3 A> 43 22 -2 3 3 <A 1 4 4 + 24 -4 <A 13 4 4 25 -3 1 B> 13 4 4 + 28 0 1 33 B> 4 4 29 1 1 34 A> 4 30 0 1 34 <A 1 + 34 -4 1 <A 15 35 -5 <B 3 15 36 -6 <A 2 3 15 37 -5 1 B> 2 3 15 38 -6 1 <B 4 3 15 39 -5 3 B> 4 3 15 40 -4 3 3 A> 3 15 41 -5 3 3 <A 16 + 43 -7 <A 18 44 -6 1 B> 18 + 52 2 1 38 B> 53 1 1 38 <A 2 + 61 -7 1 <A 18 2 62 -8 <B 3 18 2 63 -9 <A 2 3 18 2 64 -8 1 B> 2 3 18 2 65 -9 1 <B 4 3 18 2 66 -8 3 B> 4 3 18 2 67 -7 3 3 A> 3 18 2 68 -8 3 3 <A 19 2 + 70 -10 <A 111 2 71 -9 1 B> 111 2 + 82 2 1 311 B> 2 83 1 1 311 <B 4 + 94 -10 1 <B 412 95 -9 3 B> 412 96 -8 3 3 A> 411 97 -9 3 3 <A 1 410 + 99 -11 <A 13 410 100 -10 1 B> 13 410 + 103 -7 1 33 B> 410 104 -6 1 34 A> 49 105 -7 1 34 <A 1 48 + 109 -11 1 <A 15 48 110 -12 <B 3 15 48 111 -13 <A 2 3 15 48 112 -12 1 B> 2 3 15 48 113 -13 1 <B 4 3 15 48 114 -12 3 B> 4 3 15 48 115 -11 3 3 A> 3 15 48 116 -12 3 3 <A 16 48 + 118 -14 <A 18 48 119 -13 1 B> 18 48 + 127 -5 1 38 B> 48 128 -4 1 39 A> 47 129 -5 1 39 <A 1 46 + 138 -14 1 <A 110 46 139 -15 <B 3 110 46 140 -16 <A 2 3 110 46 141 -15 1 B> 2 3 110 46 142 -16 1 <B 4 3 110 46 143 -15 3 B> 4 3 110 46 144 -14 3 3 A> 3 110 46 145 -15 3 3 <A 111 46 + 147 -17 <A 113 46 148 -16 1 B> 113 46 + 161 -3 1 313 B> 46 162 -2 1 314 A> 45 163 -3 1 314 <A 1 44 + 177 -17 1 <A 115 44 178 -18 <B 3 115 44 179 -19 <A 2 3 115 44 180 -18 1 B> 2 3 115 44 181 -19 1 <B 4 3 115 44 182 -18 3 B> 4 3 115 44 183 -17 3 3 A> 3 115 44 184 -18 3 3 <A 116 44 + 186 -20 <A 118 44 187 -19 1 B> 118 44 + 205 -1 1 318 B> 44 206 0 1 319 A> 43 207 -1 1 319 <A 1 4 4 + 226 -20 1 <A 120 4 4 227 -21 <B 3 120 4 4 228 -22 <A 2 3 120 4 4 229 -21 1 B> 2 3 120 4 4 230 -22 1 <B 4 3 120 4 4 231 -21 3 B> 4 3 120 4 4 232 -20 3 3 A> 3 120 4 4 233 -21 3 3 <A 121 4 4 + 235 -23 <A 123 4 4 236 -22 1 B> 123 4 4 + 259 1 1 323 B> 4 4 260 2 1 324 A> 4 261 1 1 324 <A 1 + 285 -23 1 <A 125 286 -24 <B 3 125 287 -25 <A 2 3 125 288 -24 1 B> 2 3 125 289 -25 1 <B 4 3 125 290 -24 3 B> 4 3 125 291 -23 3 3 A> 3 125 292 -24 3 3 <A 126 + 294 -26 <A 128 295 -25 1 B> 128 + 323 3 1 328 B> 324 2 1 328 <A 2 + 352 -26 1 <A 128 2 353 -27 <B 3 128 2 354 -28 <A 2 3 128 2 355 -27 1 B> 2 3 128 2 356 -28 1 <B 4 3 128 2 357 -27 3 B> 4 3 128 2 358 -26 3 3 A> 3 128 2 359 -27 3 3 <A 129 2 + 361 -29 <A 131 2 362 -28 1 B> 131 2 + 393 3 1 331 B> 2 394 2 1 331 <B 4 + 425 -29 1 <B 432 426 -28 3 B> 432 427 -27 3 3 A> 431 428 -28 3 3 <A 1 430 + 430 -30 <A 13 430 431 -29 1 B> 13 430 + 434 -26 1 33 B> 430 435 -25 1 34 A> 429 436 -26 1 34 <A 1 428 + 440 -30 1 <A 15 428 441 -31 <B 3 15 428 442 -32 <A 2 3 15 428 443 -31 1 B> 2 3 15 428 444 -32 1 <B 4 3 15 428 445 -31 3 B> 4 3 15 428 446 -30 3 3 A> 3 15 428 447 -31 3 3 <A 16 428 + 449 -33 <A 18 428 450 -32 1 B> 18 428 + 458 -24 1 38 B> 428 459 -23 1 39 A> 427 460 -24 1 39 <A 1 426 + 469 -33 1 <A 110 426 470 -34 <B 3 110 426 471 -35 <A 2 3 110 426 472 -34 1 B> 2 3 110 426 473 -35 1 <B 4 3 110 426 474 -34 3 B> 4 3 110 426 475 -33 3 3 A> 3 110 426 476 -34 3 3 <A 111 426 + 478 -36 <A 113 426 479 -35 1 B> 113 426 + 492 -22 1 313 B> 426 493 -21 1 314 A> 425 494 -22 1 314 <A 1 424 + 508 -36 1 <A 115 424 509 -37 <B 3 115 424 510 -38 <A 2 3 115 424 511 -37 1 B> 2 3 115 424 512 -38 1 <B 4 3 115 424 513 -37 3 B> 4 3 115 424 514 -36 3 3 A> 3 115 424 515 -37 3 3 <A 116 424 + 517 -39 <A 118 424 518 -38 1 B> 118 424 + 536 -20 1 318 B> 424 537 -19 1 319 A> 423 538 -20 1 319 <A 1 422 + 557 -39 1 <A 120 422 558 -40 <B 3 120 422 559 -41 <A 2 3 120 422 560 -40 1 B> 2 3 120 422 561 -41 1 <B 4 3 120 422 562 -40 3 B> 4 3 120 422 563 -39 3 3 A> 3 120 422 564 -40 3 3 <A 121 422 + 566 -42 <A 123 422 567 -41 1 B> 123 422 + 590 -18 1 323 B> 422 591 -17 1 324 A> 421 592 -18 1 324 <A 1 420 + 616 -42 1 <A 125 420 617 -43 <B 3 125 420 618 -44 <A 2 3 125 420 619 -43 1 B> 2 3 125 420 620 -44 1 <B 4 3 125 420 621 -43 3 B> 4 3 125 420 622 -42 3 3 A> 3 125 420 623 -43 3 3 <A 126 420 After 623 steps (201 lines): state = A. Produced 48 nonzeros. Tape index -43, scanned [-44 .. 3].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 285 | 31 | 14 | 226 | 14 | 0 | 2 | 8 | 21 | ||
B | 338 | 17 | 231 | 17 | 45 | 28 | 1 | 6 | 5 | 16 | 7 |