Comment: This TM produces 668,420 nonzeros in 469,121,946,086 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
B | B2L | A2L | A3L | B4R | Z1R | 2 | left | B | 2 | left | A | 3 | left | A | 4 | right | B | 1 | right | Z |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <B 2 3 3 -1 <A 22 4 4 0 1 B> 22 5 5 -1 1 <A 3 2 6 6 0 2 B> 3 2 7 7 1 2 4 B> 2 8 8 0 2 4 <A 3 9 9 1 2 3 A> 3 10 10 2 2 3 2 A> 11 11 3 2 3 2 1 B> 12 12 2 2 3 2 1 <B 2 13 13 1 2 3 2 <A 22 14 14 0 2 3 <A 3 22 15 15 1 22 A> 3 22 16 16 2 23 A> 22 17 17 1 23 <A 3 2 18 20 -2 <A 34 2 19 21 -1 1 B> 34 2 20 25 3 1 44 B> 2 21 26 2 1 44 <A 3 22 27 3 1 43 3 A> 3 23 28 4 1 43 3 2 A> 24 29 5 1 43 3 2 1 B> 25 30 4 1 43 3 2 1 <B 2 26 31 3 1 43 3 2 <A 22 27 32 2 1 43 3 <A 3 22 28 33 3 1 43 2 A> 3 22 29 34 4 1 43 22 A> 22 30 35 3 1 43 22 <A 3 2 31 37 1 1 43 <A 33 2 32 38 2 1 42 3 A> 33 2 33 41 5 1 42 3 23 A> 2 34 42 4 1 42 3 23 <A 3 35 45 1 1 42 3 <A 34 36 46 2 1 42 2 A> 34 37 50 6 1 42 25 A> 38 51 7 1 42 25 1 B> 39 52 6 1 42 25 1 <B 2 40 53 5 1 42 25 <A 22 41 58 0 1 42 <A 35 22 42 59 1 1 4 3 A> 35 22 43 64 6 1 4 3 25 A> 22 44 65 5 1 4 3 25 <A 3 2 45 70 0 1 4 3 <A 36 2 46 71 1 1 4 2 A> 36 2 47 77 7 1 4 27 A> 2 48 78 6 1 4 27 <A 3 49 85 -1 1 4 <A 38 50 86 0 1 3 A> 38 51 94 8 1 3 28 A> 52 95 9 1 3 28 1 B> 53 96 8 1 3 28 1 <B 2 54 97 7 1 3 28 <A 22 55 105 -1 1 3 <A 38 22 56 106 0 1 2 A> 38 22 57 114 8 1 29 A> 22 58 115 7 1 29 <A 3 2 59 124 -2 1 <A 310 2 60 125 -1 2 B> 310 2 61 135 9 2 410 B> 2 62 136 8 2 410 <A 3 63 137 9 2 49 3 A> 3 64 138 10 2 49 3 2 A> 65 139 11 2 49 3 2 1 B> 66 140 10 2 49 3 2 1 <B 2 67 141 9 2 49 3 2 <A 22 68 142 8 2 49 3 <A 3 22 69 143 9 2 49 2 A> 3 22 70 144 10 2 49 22 A> 22 71 145 9 2 49 22 <A 3 2 72 147 7 2 49 <A 33 2 73 148 8 2 48 3 A> 33 2 74 151 11 2 48 3 23 A> 2 75 152 10 2 48 3 23 <A 3 76 155 7 2 48 3 <A 34 77 156 8 2 48 2 A> 34 78 160 12 2 48 25 A> 79 161 13 2 48 25 1 B> 80 162 12 2 48 25 1 <B 2 81 163 11 2 48 25 <A 22 82 168 6 2 48 <A 35 22 83 169 7 2 47 3 A> 35 22 84 174 12 2 47 3 25 A> 22 85 175 11 2 47 3 25 <A 3 2 86 180 6 2 47 3 <A 36 2 87 181 7 2 47 2 A> 36 2 88 187 13 2 47 27 A> 2 89 188 12 2 47 27 <A 3 90 195 5 2 47 <A 38 91 196 6 2 46 3 A> 38 92 204 14 2 46 3 28 A> 93 205 15 2 46 3 28 1 B> 94 206 14 2 46 3 28 1 <B 2 95 207 13 2 46 3 28 <A 22 96 215 5 2 46 3 <A 38 22 97 216 6 2 46 2 A> 38 22 98 224 14 2 46 29 A> 22 99 225 13 2 46 29 <A 3 2 100 234 4 2 46 <A 310 2 101 235 5 2 45 3 A> 310 2 102 245 15 2 45 3 210 A> 2 103 246 14 2 45 3 210 <A 3 104 256 4 2 45 3 <A 311 105 257 5 2 45 2 A> 311 106 268 16 2 45 212 A> 107 269 17 2 45 212 1 B> 108 270 16 2 45 212 1 <B 2 109 271 15 2 45 212 <A 22 110 283 3 2 45 <A 312 22 111 284 4 2 44 3 A> 312 22 112 296 16 2 44 3 212 A> 22 113 297 15 2 44 3 212 <A 3 2 114 309 3 2 44 3 <A 313 2 115 310 4 2 44 2 A> 313 2 116 323 17 2 44 214 A> 2 117 324 16 2 44 214 <A 3 118 338 2 2 44 <A 315 119 339 3 2 43 3 A> 315 120 354 18 2 43 3 215 A> 121 355 19 2 43 3 215 1 B> 122 356 18 2 43 3 215 1 <B 2 123 357 17 2 43 3 215 <A 22 124 372 2 2 43 3 <A 315 22 125 373 3 2 43 2 A> 315 22 126 388 18 2 43 216 A> 22 127 389 17 2 43 216 <A 3 2 128 405 1 2 43 <A 317 2 129 406 2 2 42 3 A> 317 2 130 423 19 2 42 3 217 A> 2 131 424 18 2 42 3 217 <A 3 132 441 1 2 42 3 <A 318 133 442 2 2 42 2 A> 318 134 460 20 2 42 219 A> 135 461 21 2 42 219 1 B> 136 462 20 2 42 219 1 <B 2 137 463 19 2 42 219 <A 22 138 482 0 2 42 <A 319 22 139 483 1 2 4 3 A> 319 22 140 502 20 2 4 3 219 A> 22 141 503 19 2 4 3 219 <A 3 2 142 522 0 2 4 3 <A 320 2 143 523 1 2 4 2 A> 320 2 144 543 21 2 4 221 A> 2 145 544 20 2 4 221 <A 3 146 565 -1 2 4 <A 322 147 566 0 2 3 A> 322 148 588 22 2 3 222 A> 149 589 23 2 3 222 1 B> 150 590 22 2 3 222 1 <B 2 151 591 21 2 3 222 <A 22 152 613 -1 2 3 <A 322 22 153 614 0 22 A> 322 22 154 636 22 224 A> 22 155 637 21 224 <A 3 2 156 661 -3 <A 325 2 157 662 -2 1 B> 325 2 158 687 23 1 425 B> 2 159 688 22 1 425 <A 3 160 689 23 1 424 3 A> 3 161 690 24 1 424 3 2 A> 162 691 25 1 424 3 2 1 B> 163 692 24 1 424 3 2 1 <B 2 164 693 23 1 424 3 2 <A 22 165 694 22 1 424 3 <A 3 22 166 695 23 1 424 2 A> 3 22 167 696 24 1 424 22 A> 22 168 697 23 1 424 22 <A 3 2 169 699 21 1 424 <A 33 2 170 700 22 1 423 3 A> 33 2 171 703 25 1 423 3 23 A> 2 172 704 24 1 423 3 23 <A 3 173 707 21 1 423 3 <A 34 174 708 22 1 423 2 A> 34 175 712 26 1 423 25 A> 176 713 27 1 423 25 1 B> 177 714 26 1 423 25 1 <B 2 178 715 25 1 423 25 <A 22 179 720 20 1 423 <A 35 22 180 721 21 1 422 3 A> 35 22 181 726 26 1 422 3 25 A> 22 182 727 25 1 422 3 25 <A 3 2 183 732 20 1 422 3 <A 36 2 184 733 21 1 422 2 A> 36 2 185 739 27 1 422 27 A> 2 186 740 26 1 422 27 <A 3 187 747 19 1 422 <A 38 188 748 20 1 421 3 A> 38 189 756 28 1 421 3 28 A> 190 757 29 1 421 3 28 1 B> 191 758 28 1 421 3 28 1 <B 2 192 759 27 1 421 3 28 <A 22 193 767 19 1 421 3 <A 38 22 194 768 20 1 421 2 A> 38 22 195 776 28 1 421 29 A> 22 196 777 27 1 421 29 <A 3 2 197 786 18 1 421 <A 310 2 198 787 19 1 420 3 A> 310 2 199 797 29 1 420 3 210 A> 2 200 798 28 1 420 3 210 <A 3 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 798 Tape index: 28 nonzeros: 33 log10(nonzeros): 1.519 log10(steps ): 2.902
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol TM #e (G. Lafitte & C. Papazian) 5T B1R B2R A3L A2R A3R B2L A2L A3L B4R Z1R : 668,420 469,121,946,086 L 4 M 201 pref sim machv Laf25_e just simple machv Laf25_e-r with repetitions reduced machv Laf25_e-1 with tape symbol exponents machv Laf25_e-m as 1-macro machine machv Laf25_e-a as 1-macro machine with pure additive config-TRs iam Laf25_e-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:00 CEST 2010 edate Tue Jul 6 22:12:00 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:00 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;