2-state 5-symbol TM #e (G. Lafitte & C. Papazian)

Comment: This TM produces 668,420 nonzeros in 469,121,946,086 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R A3L A2R A3R 1 right B 2 right B 3 left A 2 right A 3 right A
B B2L A2L A3L B4R Z1R 2 left B 2 left A 3 left A 4 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <B 2
    3        3      -1  <A 22
    4        4       0  1 B> 22
    5        5      -1  1 <A 3 2
    6        6       0  2 B> 3 2
    7        7       1  2 4 B> 2
    8        8       0  2 4 <A 3
    9        9       1  2 3 A> 3
   10       10       2  2 3 2 A>
   11       11       3  2 3 2 1 B>
   12       12       2  2 3 2 1 <B 2
   13       13       1  2 3 2 <A 22
   14       14       0  2 3 <A 3 22
   15       15       1  22 A> 3 22
   16       16       2  23 A> 22
   17       17       1  23 <A 3 2
   18       20      -2  <A 34 2
   19       21      -1  1 B> 34 2
   20       25       3  1 44 B> 2
   21       26       2  1 44 <A 3
   22       27       3  1 43 3 A> 3
   23       28       4  1 43 3 2 A>
   24       29       5  1 43 3 2 1 B>
   25       30       4  1 43 3 2 1 <B 2
   26       31       3  1 43 3 2 <A 22
   27       32       2  1 43 3 <A 3 22
   28       33       3  1 43 2 A> 3 22
   29       34       4  1 43 22 A> 22
   30       35       3  1 43 22 <A 3 2
   31       37       1  1 43 <A 33 2
   32       38       2  1 42 3 A> 33 2
   33       41       5  1 42 3 23 A> 2
   34       42       4  1 42 3 23 <A 3
   35       45       1  1 42 3 <A 34
   36       46       2  1 42 2 A> 34
   37       50       6  1 42 25 A>
   38       51       7  1 42 25 1 B>
   39       52       6  1 42 25 1 <B 2
   40       53       5  1 42 25 <A 22
   41       58       0  1 42 <A 35 22
   42       59       1  1 4 3 A> 35 22
   43       64       6  1 4 3 25 A> 22
   44       65       5  1 4 3 25 <A 3 2
   45       70       0  1 4 3 <A 36 2
   46       71       1  1 4 2 A> 36 2
   47       77       7  1 4 27 A> 2
   48       78       6  1 4 27 <A 3
   49       85      -1  1 4 <A 38
   50       86       0  1 3 A> 38
   51       94       8  1 3 28 A>
   52       95       9  1 3 28 1 B>
   53       96       8  1 3 28 1 <B 2
   54       97       7  1 3 28 <A 22
   55      105      -1  1 3 <A 38 22
   56      106       0  1 2 A> 38 22
   57      114       8  1 29 A> 22
   58      115       7  1 29 <A 3 2
   59      124      -2  1 <A 310 2
   60      125      -1  2 B> 310 2
   61      135       9  2 410 B> 2
   62      136       8  2 410 <A 3
   63      137       9  2 49 3 A> 3
   64      138      10  2 49 3 2 A>
   65      139      11  2 49 3 2 1 B>
   66      140      10  2 49 3 2 1 <B 2
   67      141       9  2 49 3 2 <A 22
   68      142       8  2 49 3 <A 3 22
   69      143       9  2 49 2 A> 3 22
   70      144      10  2 49 22 A> 22
   71      145       9  2 49 22 <A 3 2
   72      147       7  2 49 <A 33 2
   73      148       8  2 48 3 A> 33 2
   74      151      11  2 48 3 23 A> 2
   75      152      10  2 48 3 23 <A 3
   76      155       7  2 48 3 <A 34
   77      156       8  2 48 2 A> 34
   78      160      12  2 48 25 A>
   79      161      13  2 48 25 1 B>
   80      162      12  2 48 25 1 <B 2
   81      163      11  2 48 25 <A 22
   82      168       6  2 48 <A 35 22
   83      169       7  2 47 3 A> 35 22
   84      174      12  2 47 3 25 A> 22
   85      175      11  2 47 3 25 <A 3 2
   86      180       6  2 47 3 <A 36 2
   87      181       7  2 47 2 A> 36 2
   88      187      13  2 47 27 A> 2
   89      188      12  2 47 27 <A 3
   90      195       5  2 47 <A 38
   91      196       6  2 46 3 A> 38
   92      204      14  2 46 3 28 A>
   93      205      15  2 46 3 28 1 B>
   94      206      14  2 46 3 28 1 <B 2
   95      207      13  2 46 3 28 <A 22
   96      215       5  2 46 3 <A 38 22
   97      216       6  2 46 2 A> 38 22
   98      224      14  2 46 29 A> 22
   99      225      13  2 46 29 <A 3 2
  100      234       4  2 46 <A 310 2
  101      235       5  2 45 3 A> 310 2
  102      245      15  2 45 3 210 A> 2
  103      246      14  2 45 3 210 <A 3
  104      256       4  2 45 3 <A 311
  105      257       5  2 45 2 A> 311
  106      268      16  2 45 212 A>
  107      269      17  2 45 212 1 B>
  108      270      16  2 45 212 1 <B 2
  109      271      15  2 45 212 <A 22
  110      283       3  2 45 <A 312 22
  111      284       4  2 44 3 A> 312 22
  112      296      16  2 44 3 212 A> 22
  113      297      15  2 44 3 212 <A 3 2
  114      309       3  2 44 3 <A 313 2
  115      310       4  2 44 2 A> 313 2
  116      323      17  2 44 214 A> 2
  117      324      16  2 44 214 <A 3
  118      338       2  2 44 <A 315
  119      339       3  2 43 3 A> 315
  120      354      18  2 43 3 215 A>
  121      355      19  2 43 3 215 1 B>
  122      356      18  2 43 3 215 1 <B 2
  123      357      17  2 43 3 215 <A 22
  124      372       2  2 43 3 <A 315 22
  125      373       3  2 43 2 A> 315 22
  126      388      18  2 43 216 A> 22
  127      389      17  2 43 216 <A 3 2
  128      405       1  2 43 <A 317 2
  129      406       2  2 42 3 A> 317 2
  130      423      19  2 42 3 217 A> 2
  131      424      18  2 42 3 217 <A 3
  132      441       1  2 42 3 <A 318
  133      442       2  2 42 2 A> 318
  134      460      20  2 42 219 A>
  135      461      21  2 42 219 1 B>
  136      462      20  2 42 219 1 <B 2
  137      463      19  2 42 219 <A 22
  138      482       0  2 42 <A 319 22
  139      483       1  2 4 3 A> 319 22
  140      502      20  2 4 3 219 A> 22
  141      503      19  2 4 3 219 <A 3 2
  142      522       0  2 4 3 <A 320 2
  143      523       1  2 4 2 A> 320 2
  144      543      21  2 4 221 A> 2
  145      544      20  2 4 221 <A 3
  146      565      -1  2 4 <A 322
  147      566       0  2 3 A> 322
  148      588      22  2 3 222 A>
  149      589      23  2 3 222 1 B>
  150      590      22  2 3 222 1 <B 2
  151      591      21  2 3 222 <A 22
  152      613      -1  2 3 <A 322 22
  153      614       0  22 A> 322 22
  154      636      22  224 A> 22
  155      637      21  224 <A 3 2
  156      661      -3  <A 325 2
  157      662      -2  1 B> 325 2
  158      687      23  1 425 B> 2
  159      688      22  1 425 <A 3
  160      689      23  1 424 3 A> 3
  161      690      24  1 424 3 2 A>
  162      691      25  1 424 3 2 1 B>
  163      692      24  1 424 3 2 1 <B 2
  164      693      23  1 424 3 2 <A 22
  165      694      22  1 424 3 <A 3 22
  166      695      23  1 424 2 A> 3 22
  167      696      24  1 424 22 A> 22
  168      697      23  1 424 22 <A 3 2
  169      699      21  1 424 <A 33 2
  170      700      22  1 423 3 A> 33 2
  171      703      25  1 423 3 23 A> 2
  172      704      24  1 423 3 23 <A 3
  173      707      21  1 423 3 <A 34
  174      708      22  1 423 2 A> 34
  175      712      26  1 423 25 A>
  176      713      27  1 423 25 1 B>
  177      714      26  1 423 25 1 <B 2
  178      715      25  1 423 25 <A 22
  179      720      20  1 423 <A 35 22
  180      721      21  1 422 3 A> 35 22
  181      726      26  1 422 3 25 A> 22
  182      727      25  1 422 3 25 <A 3 2
  183      732      20  1 422 3 <A 36 2
  184      733      21  1 422 2 A> 36 2
  185      739      27  1 422 27 A> 2
  186      740      26  1 422 27 <A 3
  187      747      19  1 422 <A 38
  188      748      20  1 421 3 A> 38
  189      756      28  1 421 3 28 A>
  190      757      29  1 421 3 28 1 B>
  191      758      28  1 421 3 28 1 <B 2
  192      759      27  1 421 3 28 <A 22
  193      767      19  1 421 3 <A 38 22
  194      768      20  1 421 2 A> 38 22
  195      776      28  1 421 29 A> 22
  196      777      27  1 421 29 <A 3 2
  197      786      18  1 421 <A 310 2
  198      787      19  1 420 3 A> 310 2
  199      797      29  1 420 3 210 A> 2
  200      798      28  1 420 3 210 <A 3

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 798
Tape index:  28
nonzeros:    33
log10(nonzeros):    1.519
log10(steps   ):    2.902

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #e (G. Lafitte & C. Papazian)
    5T  B1R B2R A3L A2R A3R  B2L A2L A3L B4R Z1R
    : 668,420 469,121,946,086 
    L 4
    M	201
    pref	sim
    machv Laf25_e  	just simple
    machv Laf25_e-r	with repetitions reduced
    machv Laf25_e-1	with tape symbol exponents
    machv Laf25_e-m	as 1-macro machine
    machv Laf25_e-a	as 1-macro machine with pure additive config-TRs
    iam	Laf25_e-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:00 CEST 2010
    edate	Tue Jul  6 22:12:00 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:00 CEST 2010
Ready: Tue Jul 6 22:12:00 CEST 2010