Comment: This TM produces 668,420 nonzeros in 469,121,946,086 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
B | B2L | A2L | A3L | B4R | Z1R | 2 | left | B | 2 | left | A | 3 | left | A | 4 | right | B | 1 | right | Z |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 2 3 -1 <A 2 2 4 0 1 B> 2 2 5 -1 1 <A 3 2 6 0 2 B> 3 2 7 1 2 4 B> 2 8 0 2 4 <A 3 9 1 2 3 A> 3 10 2 2 3 2 A> 11 3 2 3 2 1 B> 12 2 2 3 2 1 <B 2 13 1 2 3 2 <A 2 2 14 0 2 3 <A 3 2 2 15 1 2 2 A> 3 2 2 16 2 23 A> 2 2 17 1 23 <A 3 2 + 20 -2 <A 34 2 21 -1 1 B> 34 2 + 25 3 1 44 B> 2 26 2 1 44 <A 3 27 3 1 43 3 A> 3 28 4 1 43 3 2 A> 29 5 1 43 3 2 1 B> 30 4 1 43 3 2 1 <B 2 31 3 1 43 3 2 <A 2 2 32 2 1 43 3 <A 3 2 2 33 3 1 43 2 A> 3 2 2 34 4 1 43 2 2 A> 2 2 35 3 1 43 2 2 <A 3 2 + 37 1 1 43 <A 33 2 38 2 1 4 4 3 A> 33 2 + 41 5 1 4 4 3 23 A> 2 42 4 1 4 4 3 23 <A 3 + 45 1 1 4 4 3 <A 34 46 2 1 4 4 2 A> 34 + 50 6 1 4 4 25 A> 51 7 1 4 4 25 1 B> 52 6 1 4 4 25 1 <B 2 53 5 1 4 4 25 <A 2 2 + 58 0 1 4 4 <A 35 2 2 59 1 1 4 3 A> 35 2 2 + 64 6 1 4 3 25 A> 2 2 65 5 1 4 3 25 <A 3 2 + 70 0 1 4 3 <A 36 2 71 1 1 4 2 A> 36 2 + 77 7 1 4 27 A> 2 78 6 1 4 27 <A 3 + 85 -1 1 4 <A 38 86 0 1 3 A> 38 + 94 8 1 3 28 A> 95 9 1 3 28 1 B> 96 8 1 3 28 1 <B 2 97 7 1 3 28 <A 2 2 + 105 -1 1 3 <A 38 2 2 106 0 1 2 A> 38 2 2 + 114 8 1 29 A> 2 2 115 7 1 29 <A 3 2 + 124 -2 1 <A 310 2 125 -1 2 B> 310 2 + 135 9 2 410 B> 2 136 8 2 410 <A 3 137 9 2 49 3 A> 3 138 10 2 49 3 2 A> 139 11 2 49 3 2 1 B> 140 10 2 49 3 2 1 <B 2 141 9 2 49 3 2 <A 2 2 142 8 2 49 3 <A 3 2 2 143 9 2 49 2 A> 3 2 2 144 10 2 49 2 2 A> 2 2 145 9 2 49 2 2 <A 3 2 + 147 7 2 49 <A 33 2 148 8 2 48 3 A> 33 2 + 151 11 2 48 3 23 A> 2 152 10 2 48 3 23 <A 3 + 155 7 2 48 3 <A 34 156 8 2 48 2 A> 34 + 160 12 2 48 25 A> 161 13 2 48 25 1 B> 162 12 2 48 25 1 <B 2 163 11 2 48 25 <A 2 2 + 168 6 2 48 <A 35 2 2 169 7 2 47 3 A> 35 2 2 + 174 12 2 47 3 25 A> 2 2 175 11 2 47 3 25 <A 3 2 + 180 6 2 47 3 <A 36 2 181 7 2 47 2 A> 36 2 + 187 13 2 47 27 A> 2 188 12 2 47 27 <A 3 + 195 5 2 47 <A 38 196 6 2 46 3 A> 38 + 204 14 2 46 3 28 A> 205 15 2 46 3 28 1 B> 206 14 2 46 3 28 1 <B 2 207 13 2 46 3 28 <A 2 2 + 215 5 2 46 3 <A 38 2 2 216 6 2 46 2 A> 38 2 2 + 224 14 2 46 29 A> 2 2 225 13 2 46 29 <A 3 2 + 234 4 2 46 <A 310 2 235 5 2 45 3 A> 310 2 + 245 15 2 45 3 210 A> 2 246 14 2 45 3 210 <A 3 + 256 4 2 45 3 <A 311 257 5 2 45 2 A> 311 + 268 16 2 45 212 A> 269 17 2 45 212 1 B> 270 16 2 45 212 1 <B 2 271 15 2 45 212 <A 2 2 + 283 3 2 45 <A 312 2 2 284 4 2 44 3 A> 312 2 2 + 296 16 2 44 3 212 A> 2 2 297 15 2 44 3 212 <A 3 2 + 309 3 2 44 3 <A 313 2 310 4 2 44 2 A> 313 2 + 323 17 2 44 214 A> 2 324 16 2 44 214 <A 3 + 338 2 2 44 <A 315 339 3 2 43 3 A> 315 + 354 18 2 43 3 215 A> 355 19 2 43 3 215 1 B> 356 18 2 43 3 215 1 <B 2 357 17 2 43 3 215 <A 2 2 + 372 2 2 43 3 <A 315 2 2 373 3 2 43 2 A> 315 2 2 + 388 18 2 43 216 A> 2 2 389 17 2 43 216 <A 3 2 + 405 1 2 43 <A 317 2 406 2 2 4 4 3 A> 317 2 + 423 19 2 4 4 3 217 A> 2 424 18 2 4 4 3 217 <A 3 + 441 1 2 4 4 3 <A 318 442 2 2 4 4 2 A> 318 + 460 20 2 4 4 219 A> 461 21 2 4 4 219 1 B> 462 20 2 4 4 219 1 <B 2 463 19 2 4 4 219 <A 2 2 + 482 0 2 4 4 <A 319 2 2 483 1 2 4 3 A> 319 2 2 + 502 20 2 4 3 219 A> 2 2 503 19 2 4 3 219 <A 3 2 + 522 0 2 4 3 <A 320 2 523 1 2 4 2 A> 320 2 + 543 21 2 4 221 A> 2 544 20 2 4 221 <A 3 + 565 -1 2 4 <A 322 566 0 2 3 A> 322 + 588 22 2 3 222 A> 589 23 2 3 222 1 B> 590 22 2 3 222 1 <B 2 591 21 2 3 222 <A 2 2 + 613 -1 2 3 <A 322 2 2 614 0 2 2 A> 322 2 2 + 636 22 224 A> 2 2 637 21 224 <A 3 2 + 661 -3 <A 325 2 662 -2 1 B> 325 2 + 687 23 1 425 B> 2 688 22 1 425 <A 3 689 23 1 424 3 A> 3 690 24 1 424 3 2 A> 691 25 1 424 3 2 1 B> 692 24 1 424 3 2 1 <B 2 693 23 1 424 3 2 <A 2 2 694 22 1 424 3 <A 3 2 2 695 23 1 424 2 A> 3 2 2 696 24 1 424 2 2 A> 2 2 697 23 1 424 2 2 <A 3 2 + 699 21 1 424 <A 33 2 700 22 1 423 3 A> 33 2 + 703 25 1 423 3 23 A> 2 704 24 1 423 3 23 <A 3 + 707 21 1 423 3 <A 34 708 22 1 423 2 A> 34 + 712 26 1 423 25 A> 713 27 1 423 25 1 B> 714 26 1 423 25 1 <B 2 715 25 1 423 25 <A 2 2 + 720 20 1 423 <A 35 2 2 721 21 1 422 3 A> 35 2 2 + 726 26 1 422 3 25 A> 2 2 727 25 1 422 3 25 <A 3 2 + 732 20 1 422 3 <A 36 2 733 21 1 422 2 A> 36 2 + 739 27 1 422 27 A> 2 740 26 1 422 27 <A 3 + 747 19 1 422 <A 38 748 20 1 421 3 A> 38 + 756 28 1 421 3 28 A> 757 29 1 421 3 28 1 B> 758 28 1 421 3 28 1 <B 2 759 27 1 421 3 28 <A 2 2 + 767 19 1 421 3 <A 38 2 2 768 20 1 421 2 A> 38 2 2 + 776 28 1 421 29 A> 2 2 777 27 1 421 29 <A 3 2 + 786 18 1 421 <A 310 2 787 19 1 420 3 A> 310 2 + 797 29 1 420 3 210 A> 2 798 28 1 420 3 210 <A 3 After 798 steps (201 lines): state = A. Produced 33 nonzeros. Tape index 28, scanned [-3 .. 29].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 723 | 18 | 2 | 350 | 333 | 20 | 0 | 5 | 13 | 9 | 8 |
B | 75 | 15 | 15 | 5 | 40 | 1 | 2 | 4 | 6 |