2-state 5-symbol TM #e (G. Lafitte & C. Papazian)

Comment: This TM produces 668,420 nonzeros in 469,121,946,086 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R A3L A2R A3R 1 right B 2 right B 3 left A 2 right A 3 right A
B B2L A2L A3L B4R Z1R 2 left B 2 left A 3 left A 4 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <B 2
     3    -1  <A 2 2
     4     0  1 B> 2 2
     5    -1  1 <A 3 2
     6     0  2 B> 3 2
     7     1  2 4 B> 2
     8     0  2 4 <A 3
     9     1  2 3 A> 3
    10     2  2 3 2 A>
    11     3  2 3 2 1 B>
    12     2  2 3 2 1 <B 2
    13     1  2 3 2 <A 2 2
    14     0  2 3 <A 3 2 2
    15     1  2 2 A> 3 2 2
    16     2  23 A> 2 2
    17     1  23 <A 3 2
+   20    -2  <A 34 2
    21    -1  1 B> 34 2
+   25     3  1 44 B> 2
    26     2  1 44 <A 3
    27     3  1 43 3 A> 3
    28     4  1 43 3 2 A>
    29     5  1 43 3 2 1 B>
    30     4  1 43 3 2 1 <B 2
    31     3  1 43 3 2 <A 2 2
    32     2  1 43 3 <A 3 2 2
    33     3  1 43 2 A> 3 2 2
    34     4  1 43 2 2 A> 2 2
    35     3  1 43 2 2 <A 3 2
+   37     1  1 43 <A 33 2
    38     2  1 4 4 3 A> 33 2
+   41     5  1 4 4 3 23 A> 2
    42     4  1 4 4 3 23 <A 3
+   45     1  1 4 4 3 <A 34
    46     2  1 4 4 2 A> 34
+   50     6  1 4 4 25 A>
    51     7  1 4 4 25 1 B>
    52     6  1 4 4 25 1 <B 2
    53     5  1 4 4 25 <A 2 2
+   58     0  1 4 4 <A 35 2 2
    59     1  1 4 3 A> 35 2 2
+   64     6  1 4 3 25 A> 2 2
    65     5  1 4 3 25 <A 3 2
+   70     0  1 4 3 <A 36 2
    71     1  1 4 2 A> 36 2
+   77     7  1 4 27 A> 2
    78     6  1 4 27 <A 3
+   85    -1  1 4 <A 38
    86     0  1 3 A> 38
+   94     8  1 3 28 A>
    95     9  1 3 28 1 B>
    96     8  1 3 28 1 <B 2
    97     7  1 3 28 <A 2 2
+  105    -1  1 3 <A 38 2 2
   106     0  1 2 A> 38 2 2
+  114     8  1 29 A> 2 2
   115     7  1 29 <A 3 2
+  124    -2  1 <A 310 2
   125    -1  2 B> 310 2
+  135     9  2 410 B> 2
   136     8  2 410 <A 3
   137     9  2 49 3 A> 3
   138    10  2 49 3 2 A>
   139    11  2 49 3 2 1 B>
   140    10  2 49 3 2 1 <B 2
   141     9  2 49 3 2 <A 2 2
   142     8  2 49 3 <A 3 2 2
   143     9  2 49 2 A> 3 2 2
   144    10  2 49 2 2 A> 2 2
   145     9  2 49 2 2 <A 3 2
+  147     7  2 49 <A 33 2
   148     8  2 48 3 A> 33 2
+  151    11  2 48 3 23 A> 2
   152    10  2 48 3 23 <A 3
+  155     7  2 48 3 <A 34
   156     8  2 48 2 A> 34
+  160    12  2 48 25 A>
   161    13  2 48 25 1 B>
   162    12  2 48 25 1 <B 2
   163    11  2 48 25 <A 2 2
+  168     6  2 48 <A 35 2 2
   169     7  2 47 3 A> 35 2 2
+  174    12  2 47 3 25 A> 2 2
   175    11  2 47 3 25 <A 3 2
+  180     6  2 47 3 <A 36 2
   181     7  2 47 2 A> 36 2
+  187    13  2 47 27 A> 2
   188    12  2 47 27 <A 3
+  195     5  2 47 <A 38
   196     6  2 46 3 A> 38
+  204    14  2 46 3 28 A>
   205    15  2 46 3 28 1 B>
   206    14  2 46 3 28 1 <B 2
   207    13  2 46 3 28 <A 2 2
+  215     5  2 46 3 <A 38 2 2
   216     6  2 46 2 A> 38 2 2
+  224    14  2 46 29 A> 2 2
   225    13  2 46 29 <A 3 2
+  234     4  2 46 <A 310 2
   235     5  2 45 3 A> 310 2
+  245    15  2 45 3 210 A> 2
   246    14  2 45 3 210 <A 3
+  256     4  2 45 3 <A 311
   257     5  2 45 2 A> 311
+  268    16  2 45 212 A>
   269    17  2 45 212 1 B>
   270    16  2 45 212 1 <B 2
   271    15  2 45 212 <A 2 2
+  283     3  2 45 <A 312 2 2
   284     4  2 44 3 A> 312 2 2
+  296    16  2 44 3 212 A> 2 2
   297    15  2 44 3 212 <A 3 2
+  309     3  2 44 3 <A 313 2
   310     4  2 44 2 A> 313 2
+  323    17  2 44 214 A> 2
   324    16  2 44 214 <A 3
+  338     2  2 44 <A 315
   339     3  2 43 3 A> 315
+  354    18  2 43 3 215 A>
   355    19  2 43 3 215 1 B>
   356    18  2 43 3 215 1 <B 2
   357    17  2 43 3 215 <A 2 2
+  372     2  2 43 3 <A 315 2 2
   373     3  2 43 2 A> 315 2 2
+  388    18  2 43 216 A> 2 2
   389    17  2 43 216 <A 3 2
+  405     1  2 43 <A 317 2
   406     2  2 4 4 3 A> 317 2
+  423    19  2 4 4 3 217 A> 2
   424    18  2 4 4 3 217 <A 3
+  441     1  2 4 4 3 <A 318
   442     2  2 4 4 2 A> 318
+  460    20  2 4 4 219 A>
   461    21  2 4 4 219 1 B>
   462    20  2 4 4 219 1 <B 2
   463    19  2 4 4 219 <A 2 2
+  482     0  2 4 4 <A 319 2 2
   483     1  2 4 3 A> 319 2 2
+  502    20  2 4 3 219 A> 2 2
   503    19  2 4 3 219 <A 3 2
+  522     0  2 4 3 <A 320 2
   523     1  2 4 2 A> 320 2
+  543    21  2 4 221 A> 2
   544    20  2 4 221 <A 3
+  565    -1  2 4 <A 322
   566     0  2 3 A> 322
+  588    22  2 3 222 A>
   589    23  2 3 222 1 B>
   590    22  2 3 222 1 <B 2
   591    21  2 3 222 <A 2 2
+  613    -1  2 3 <A 322 2 2
   614     0  2 2 A> 322 2 2
+  636    22  224 A> 2 2
   637    21  224 <A 3 2
+  661    -3  <A 325 2
   662    -2  1 B> 325 2
+  687    23  1 425 B> 2
   688    22  1 425 <A 3
   689    23  1 424 3 A> 3
   690    24  1 424 3 2 A>
   691    25  1 424 3 2 1 B>
   692    24  1 424 3 2 1 <B 2
   693    23  1 424 3 2 <A 2 2
   694    22  1 424 3 <A 3 2 2
   695    23  1 424 2 A> 3 2 2
   696    24  1 424 2 2 A> 2 2
   697    23  1 424 2 2 <A 3 2
+  699    21  1 424 <A 33 2
   700    22  1 423 3 A> 33 2
+  703    25  1 423 3 23 A> 2
   704    24  1 423 3 23 <A 3
+  707    21  1 423 3 <A 34
   708    22  1 423 2 A> 34
+  712    26  1 423 25 A>
   713    27  1 423 25 1 B>
   714    26  1 423 25 1 <B 2
   715    25  1 423 25 <A 2 2
+  720    20  1 423 <A 35 2 2
   721    21  1 422 3 A> 35 2 2
+  726    26  1 422 3 25 A> 2 2
   727    25  1 422 3 25 <A 3 2
+  732    20  1 422 3 <A 36 2
   733    21  1 422 2 A> 36 2
+  739    27  1 422 27 A> 2
   740    26  1 422 27 <A 3
+  747    19  1 422 <A 38
   748    20  1 421 3 A> 38
+  756    28  1 421 3 28 A>
   757    29  1 421 3 28 1 B>
   758    28  1 421 3 28 1 <B 2
   759    27  1 421 3 28 <A 2 2
+  767    19  1 421 3 <A 38 2 2
   768    20  1 421 2 A> 38 2 2
+  776    28  1 421 29 A> 2 2
   777    27  1 421 29 <A 3 2
+  786    18  1 421 <A 310 2
   787    19  1 420 3 A> 310 2
+  797    29  1 420 3 210 A> 2
   798    28  1 420 3 210 <A 3

After 798 steps (201 lines): state = A.
Produced     33 nonzeros.
Tape index 28, scanned [-3 .. 29].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 723 18 2 350 333 20 0 5 13 9 8
B 75 15 15 5 40   1 2 4 6  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:00 CEST 2010