Comment: This TM produces 668,420 nonzeros in 469,121,946,086 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B2R | A3L | A2R | A3R | 1 | right | B | 2 | right | B | 3 | left | A | 2 | right | A | 3 | right | A |
| B | B2L | A2L | A3L | B4R | Z1R | 2 | left | B | 2 | left | A | 3 | left | A | 4 | right | B | 1 | right | Z |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 2
3 -1 <A 2 2
4 0 1 B> 2 2
5 -1 1 <A 3 2
6 0 2 B> 3 2
7 1 2 4 B> 2
8 0 2 4 <A 3
9 1 2 3 A> 3
10 2 2 3 2 A>
11 3 2 3 2 1 B>
12 2 2 3 2 1 <B 2
13 1 2 3 2 <A 2 2
14 0 2 3 <A 3 2 2
15 1 2 2 A> 3 2 2
16 2 23 A> 2 2
17 1 23 <A 3 2
+ 20 -2 <A 34 2
21 -1 1 B> 34 2
+ 25 3 1 44 B> 2
26 2 1 44 <A 3
27 3 1 43 3 A> 3
28 4 1 43 3 2 A>
29 5 1 43 3 2 1 B>
30 4 1 43 3 2 1 <B 2
31 3 1 43 3 2 <A 2 2
32 2 1 43 3 <A 3 2 2
33 3 1 43 2 A> 3 2 2
34 4 1 43 2 2 A> 2 2
35 3 1 43 2 2 <A 3 2
+ 37 1 1 43 <A 33 2
38 2 1 4 4 3 A> 33 2
+ 41 5 1 4 4 3 23 A> 2
42 4 1 4 4 3 23 <A 3
+ 45 1 1 4 4 3 <A 34
46 2 1 4 4 2 A> 34
+ 50 6 1 4 4 25 A>
51 7 1 4 4 25 1 B>
52 6 1 4 4 25 1 <B 2
53 5 1 4 4 25 <A 2 2
+ 58 0 1 4 4 <A 35 2 2
59 1 1 4 3 A> 35 2 2
+ 64 6 1 4 3 25 A> 2 2
65 5 1 4 3 25 <A 3 2
+ 70 0 1 4 3 <A 36 2
71 1 1 4 2 A> 36 2
+ 77 7 1 4 27 A> 2
78 6 1 4 27 <A 3
+ 85 -1 1 4 <A 38
86 0 1 3 A> 38
+ 94 8 1 3 28 A>
95 9 1 3 28 1 B>
96 8 1 3 28 1 <B 2
97 7 1 3 28 <A 2 2
+ 105 -1 1 3 <A 38 2 2
106 0 1 2 A> 38 2 2
+ 114 8 1 29 A> 2 2
115 7 1 29 <A 3 2
+ 124 -2 1 <A 310 2
125 -1 2 B> 310 2
+ 135 9 2 410 B> 2
136 8 2 410 <A 3
137 9 2 49 3 A> 3
138 10 2 49 3 2 A>
139 11 2 49 3 2 1 B>
140 10 2 49 3 2 1 <B 2
141 9 2 49 3 2 <A 2 2
142 8 2 49 3 <A 3 2 2
143 9 2 49 2 A> 3 2 2
144 10 2 49 2 2 A> 2 2
145 9 2 49 2 2 <A 3 2
+ 147 7 2 49 <A 33 2
148 8 2 48 3 A> 33 2
+ 151 11 2 48 3 23 A> 2
152 10 2 48 3 23 <A 3
+ 155 7 2 48 3 <A 34
156 8 2 48 2 A> 34
+ 160 12 2 48 25 A>
161 13 2 48 25 1 B>
162 12 2 48 25 1 <B 2
163 11 2 48 25 <A 2 2
+ 168 6 2 48 <A 35 2 2
169 7 2 47 3 A> 35 2 2
+ 174 12 2 47 3 25 A> 2 2
175 11 2 47 3 25 <A 3 2
+ 180 6 2 47 3 <A 36 2
181 7 2 47 2 A> 36 2
+ 187 13 2 47 27 A> 2
188 12 2 47 27 <A 3
+ 195 5 2 47 <A 38
196 6 2 46 3 A> 38
+ 204 14 2 46 3 28 A>
205 15 2 46 3 28 1 B>
206 14 2 46 3 28 1 <B 2
207 13 2 46 3 28 <A 2 2
+ 215 5 2 46 3 <A 38 2 2
216 6 2 46 2 A> 38 2 2
+ 224 14 2 46 29 A> 2 2
225 13 2 46 29 <A 3 2
+ 234 4 2 46 <A 310 2
235 5 2 45 3 A> 310 2
+ 245 15 2 45 3 210 A> 2
246 14 2 45 3 210 <A 3
+ 256 4 2 45 3 <A 311
257 5 2 45 2 A> 311
+ 268 16 2 45 212 A>
269 17 2 45 212 1 B>
270 16 2 45 212 1 <B 2
271 15 2 45 212 <A 2 2
+ 283 3 2 45 <A 312 2 2
284 4 2 44 3 A> 312 2 2
+ 296 16 2 44 3 212 A> 2 2
297 15 2 44 3 212 <A 3 2
+ 309 3 2 44 3 <A 313 2
310 4 2 44 2 A> 313 2
+ 323 17 2 44 214 A> 2
324 16 2 44 214 <A 3
+ 338 2 2 44 <A 315
339 3 2 43 3 A> 315
+ 354 18 2 43 3 215 A>
355 19 2 43 3 215 1 B>
356 18 2 43 3 215 1 <B 2
357 17 2 43 3 215 <A 2 2
+ 372 2 2 43 3 <A 315 2 2
373 3 2 43 2 A> 315 2 2
+ 388 18 2 43 216 A> 2 2
389 17 2 43 216 <A 3 2
+ 405 1 2 43 <A 317 2
406 2 2 4 4 3 A> 317 2
+ 423 19 2 4 4 3 217 A> 2
424 18 2 4 4 3 217 <A 3
+ 441 1 2 4 4 3 <A 318
442 2 2 4 4 2 A> 318
+ 460 20 2 4 4 219 A>
461 21 2 4 4 219 1 B>
462 20 2 4 4 219 1 <B 2
463 19 2 4 4 219 <A 2 2
+ 482 0 2 4 4 <A 319 2 2
483 1 2 4 3 A> 319 2 2
+ 502 20 2 4 3 219 A> 2 2
503 19 2 4 3 219 <A 3 2
+ 522 0 2 4 3 <A 320 2
523 1 2 4 2 A> 320 2
+ 543 21 2 4 221 A> 2
544 20 2 4 221 <A 3
+ 565 -1 2 4 <A 322
566 0 2 3 A> 322
+ 588 22 2 3 222 A>
589 23 2 3 222 1 B>
590 22 2 3 222 1 <B 2
591 21 2 3 222 <A 2 2
+ 613 -1 2 3 <A 322 2 2
614 0 2 2 A> 322 2 2
+ 636 22 224 A> 2 2
637 21 224 <A 3 2
+ 661 -3 <A 325 2
662 -2 1 B> 325 2
+ 687 23 1 425 B> 2
688 22 1 425 <A 3
689 23 1 424 3 A> 3
690 24 1 424 3 2 A>
691 25 1 424 3 2 1 B>
692 24 1 424 3 2 1 <B 2
693 23 1 424 3 2 <A 2 2
694 22 1 424 3 <A 3 2 2
695 23 1 424 2 A> 3 2 2
696 24 1 424 2 2 A> 2 2
697 23 1 424 2 2 <A 3 2
+ 699 21 1 424 <A 33 2
700 22 1 423 3 A> 33 2
+ 703 25 1 423 3 23 A> 2
704 24 1 423 3 23 <A 3
+ 707 21 1 423 3 <A 34
708 22 1 423 2 A> 34
+ 712 26 1 423 25 A>
713 27 1 423 25 1 B>
714 26 1 423 25 1 <B 2
715 25 1 423 25 <A 2 2
+ 720 20 1 423 <A 35 2 2
721 21 1 422 3 A> 35 2 2
+ 726 26 1 422 3 25 A> 2 2
727 25 1 422 3 25 <A 3 2
+ 732 20 1 422 3 <A 36 2
733 21 1 422 2 A> 36 2
+ 739 27 1 422 27 A> 2
740 26 1 422 27 <A 3
+ 747 19 1 422 <A 38
748 20 1 421 3 A> 38
+ 756 28 1 421 3 28 A>
757 29 1 421 3 28 1 B>
758 28 1 421 3 28 1 <B 2
759 27 1 421 3 28 <A 2 2
+ 767 19 1 421 3 <A 38 2 2
768 20 1 421 2 A> 38 2 2
+ 776 28 1 421 29 A> 2 2
777 27 1 421 29 <A 3 2
+ 786 18 1 421 <A 310 2
787 19 1 420 3 A> 310 2
+ 797 29 1 420 3 210 A> 2
798 28 1 420 3 210 <A 3
After 798 steps (201 lines): state = A.
Produced 33 nonzeros.
Tape index 28, scanned [-3 .. 29].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 723 | 18 | 2 | 350 | 333 | 20 | 0 | 5 | 13 | 9 | 8 |
| B | 75 | 15 | 15 | 5 | 40 | 1 | 2 | 4 | 6 | ||