2-state 5-symbol TM #c (G. Lafitte & C. Papazian)

Comment: This TM produces 97'104 nonzeros in 7'543'673'517 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R B3R A4L A3R 1 right B 2 right B 3 right B 4 left A 3 right A
B A0L B4R Z1R B0R B1L 0 left A 4 right B 1 right Z 0 right B 1 left B
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 A . . . . . 10
     3    1 B . . . . . 20
     4    0 A . . . . . 20
     5    1 B . . . . . 30
     6    0 A . . . . . 30
     7   -1 A . . . . .040
     8    0 B . . . . .140
     9   -1 B . . . . .110
+   11    1 B . . . . .440   by B/1 * 2
    12    0 A . . . . .440
    13    1 A . . . . .430
    14    2 B . . . . .4310
    15    1 A . . . . .4310
    16    2 B . . . . .4320
    17    1 A . . . . .4320
    18    2 B . . . . .4330
    19    1 A . . . . .4330
+   21   -1 A . . . . .4440  by A/3 * 2
+   24    2 A . . . . .3330  by A/4 * 3
    25    3 B . . . . .33310
    26    2 A . . . . .33310
    27    3 B . . . . .33320
    28    2 A . . . . .33320
    29    3 B . . . . .33330
    30    2 A . . . . .33330
+   34   -2 A . . . . 044440   by A/3 * 4
    35   -1 B . . . . 144440
    36   -2 B . . . . 114440
+   38    0 B . . . . 444440   by B/1 * 2
+   41   -3 B . . . .0111440   by B/4 * 3
    42   -4 A . . . 00111440
    43   -3 B . . . 10111440
    44   -4 A . . . 10111440
    45   -3 B . . . 20111440
    46   -4 A . . . 20111440
    47   -3 B . . . 30111440
    48   -4 A . . . 30111440
    49   -5 A . . .040111440
    50   -4 B . . .140111440
    51   -5 B . . .110111440
+   53   -3 B . . .440111440   by B/1 * 2
    54   -4 A . . .440111440
    55   -3 A . . .430111440
    56   -2 B . . .431111440
+   59    1 B . . .431444440   by B/1 * 3
+   63   -3 B . . .431111140   by B/4 * 4
+   68    2 B . . .434444440   by B/1 * 5
+   74   -4 B . . .431111110   by B/4 * 6
    75   -3 B . . .401111110
+   81    3 B . . .404444440   by B/1 * 6
    82    2 A . . .404444440
    83    3 A . . .404444430
    84    4 B . . .4044444310
    85    3 A . . .4044444310
    86    4 B . . .4044444320
    87    3 A . . .4044444320
    88    4 B . . .4044444330
    89    3 A . . .4044444330
+   91    1 A . . .4044444440  by A/3 * 2
+   94    4 A . . .4044443330  by A/4 * 3
    95    5 B . . .40444433310
    96    4 A . . .40444433310
    97    5 B . . .40444433320
    98    4 A . . .40444433320
    99    5 B . . .40444433330
   100    4 A . . .40444433330
+  104    0 A . . .40444444440   by A/3 * 4
+  109    5 A . . .40444333330   by A/4 * 5
   110    6 B . . .404443333310
   111    5 A . . .404443333310
   112    6 B . . .404443333320
   113    5 A . . .404443333320
   114    6 B . . .404443333330
   115    5 A . . .404443333330
+  121   -1 A . . .404444444440  by A/3 * 6
+  128    6 A . . .404433333330  by A/4 * 7
   129    7 B . . .4044333333310
   130    6 A . . .4044333333310
   131    7 B . . .4044333333320
   132    6 A . . .4044333333320
   133    7 B . . .4044333333330
   134    6 A . . .4044333333330
+  142   -2 A . . .4044444444440   by A/3 * 8
+  151    7 A . . .4043333333330   by A/4 * 9
   152    8 B . . .40433333333310
   153    7 A . . .40433333333310
   154    8 B . . .40433333333320
   155    7 A . . .40433333333320
   156    8 B . . .40433333333330
   157    7 A . . .40433333333330
+  167   -3 A . . .40444444444440  by A/3 * 10
+  178    8 A . . .40333333333330  by A/4 * 11
   179    9 B . . .403333333333310
   180    8 A . . .403333333333310
   181    9 B . . .403333333333320
   182    8 A . . .403333333333320
   183    9 B . . .403333333333330
   184    8 A . . .403333333333330
+  196   -4 A . . .404444444444440   by A/3 * 12
   197   -3 B . . .414444444444440
   198   -4 B . . .411444444444440
+  200   -2 B . . .444444444444440   by B/1 * 2
+  204   -6 B . . 0111144444444440   by B/4 * 4
   205   -7 A . .00111144444444440
   206   -6 B . .10111144444444440
   207   -7 A . .10111144444444440
   208   -6 B . .20111144444444440
   209   -7 A . .20111144444444440
   210   -6 B . .30111144444444440
   211   -7 A . .30111144444444440
   212   -8 A . 040111144444444440
   213   -7 B . 140111144444444440
   214   -8 B . 110111144444444440
+  216   -6 B . 440111144444444440   by B/1 * 2
   217   -7 A . 440111144444444440
   218   -6 A . 430111144444444440
   219   -5 B . 431111144444444440
+  223   -1 B . 431444444444444440   by B/1 * 4
+  228   -6 B . 431111114444444440   by B/4 * 5
+  234    0 B . 434444444444444440   by B/1 * 6
+  241   -7 B . 431111111444444440   by B/4 * 7
   242   -6 B . 401111111444444440
+  249    1 B . 404444444444444440   by B/1 * 7
+  257   -7 B . 401111111144444440   by B/4 * 8
   258   -8 A . 401111111144444440
   259   -7 A . 301111111144444440
   260   -6 B . 311111111144444440
+  268    2 B . 314444444444444440   by B/1 * 8
+  277   -7 B . 311111111114444440   by B/4 * 9
+  287    3 B . 344444444444444440   by B/1 * 10
+  298   -8 B . 311111111111444440   by B/4 * 11
   299   -7 B . 011111111111444440
+  310    4 B . 044444444444444440   by B/1 * 11
+  322   -8 B . 011111111111144440   by B/4 * 12
   323   -9 A .0011111111111144440
   324   -8 B .1011111111111144440
   325   -9 A .1011111111111144440
   326   -8 B .2011111111111144440
   327   -9 A .2011111111111144440
   328   -8 B .3011111111111144440
   329   -9 A .3011111111111144440
   330  -10 A 04011111111111144440
   331   -9 B 14011111111111144440
   332  -10 B 11011111111111144440
+  334   -8 B 44011111111111144440   by B/1 * 2
   335   -9 A 44011111111111144440
   336   -8 A 43011111111111144440
   337   -7 B 43111111111111144440
+  349    5 B 43144444444444444440   by B/1 * 12
+  362   -8 B 43111111111111114440   by B/4 * 13
+  376    6 B 43444444444444444440   by B/1 * 14
+  391   -9 B 43111111111111111440   by B/4 * 15
   392   -8 B 40111111111111111440
+  407    7 B 40444444444444444440   by B/1 * 15
+  423   -9 B 40111111111111111140   by B/4 * 16
   424  -10 A 40111111111111111140
   425   -9 A 30111111111111111140
   426   -8 B 31111111111111111140
+  442    8 B 31444444444444444440   by B/1 * 16
+  459   -9 B 31111111111111111110   by B/4 * 17
+  477    9 B 34444444444444444440   by B/1 * 18
   478    8 A 34444444444444444440
   479    9 A 34444444444444444430
   480   10 B 344444444444444444310
   481    9 A 344444444444444444310
   482   10 B 344444444444444444320
   483    9 A 344444444444444444320
   484   10 B 344444444444444444330
   485    9 A 344444444444444444330
+  487    7 A 344444444444444444440  by A/3 * 2
+  490   10 A 344444444444444443330  by A/4 * 3
   491   11 B 3444444444444444433310
   492   10 A 3444444444444444433310
   493   11 B 3444444444444444433320
   494   10 A 3444444444444444433320
   495   11 B 3444444444444444433330
   496   10 A 3444444444444444433330
+  500    6 A 3444444444444444444440   by A/3 * 4
+  505   11 A 3444444444444444333330   by A/4 * 5
   506   12 B 34444444444444443333310
   507   11 A 34444444444444443333310
   508   12 B 34444444444444443333320
   509   11 A 34444444444444443333320
   510   12 B 34444444444444443333330
   511   11 A 34444444444444443333330
+  517    5 A 34444444444444444444440  by A/3 * 6
+  524   12 A 34444444444444433333330  by A/4 * 7
   525   13 B 344444444444444333333310
   526   12 A 344444444444444333333310
   527   13 B 344444444444444333333320
   528   12 A 344444444444444333333320
   529   13 B 344444444444444333333330
   530   12 A 344444444444444333333330
+  538    4 A 344444444444444444444440   by A/3 * 8
+  547   13 A 344444444444443333333330   by A/4 * 9
   548   14 B 3444444444444433333333310
   549   13 A 3444444444444433333333310
   550   14 B 3444444444444433333333320
   551   13 A 3444444444444433333333320

After 551 steps (201 lines): state = A.
Produced     24 nonzeros.
Tape index 13, scanned [-10 .. 14].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 203 28 17 16 72 70 0 2 4 6 12
B 348 61 147   4 136 1 9   74 8
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:55 CEST 2010