Comment: This TM produces 97'104 nonzeros in 7'543'673'517 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | B2R | B3R | A4L | A3R | 1 | right | B | 2 | right | B | 3 | right | B | 4 | left | A | 3 | right | A |
B | A0L | B4R | Z1R | B0R | B1L | 0 | left | A | 4 | right | B | 1 | right | Z | 0 | right | B | 1 | left | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 1 2 B> 4 0 2 <A 5 1 3 B> 6 0 3 <A 7 -1 <A 4 8 0 1 B> 4 9 -1 1 <B 1 10 0 4 B> 1 11 1 4 4 B> 12 0 4 4 <A 13 1 4 3 A> 14 2 4 3 1 B> 15 1 4 3 1 <A 16 2 4 3 2 B> 17 1 4 3 2 <A 18 2 4 3 3 B> 19 1 4 3 3 <A + 21 -1 4 <A 4 4 22 0 3 A> 4 4 + 24 2 33 A> 25 3 33 1 B> 26 2 33 1 <A 27 3 33 2 B> 28 2 33 2 <A 29 3 34 B> 30 2 34 <A + 34 -2 <A 44 35 -1 1 B> 44 36 -2 1 <B 1 43 37 -1 4 B> 1 43 38 0 4 4 B> 43 39 -1 4 4 <B 1 4 4 + 41 -3 <B 13 4 4 42 -4 <A 0 13 4 4 43 -3 1 B> 0 13 4 4 44 -4 1 <A 0 13 4 4 45 -3 2 B> 0 13 4 4 46 -4 2 <A 0 13 4 4 47 -3 3 B> 0 13 4 4 48 -4 3 <A 0 13 4 4 49 -5 <A 4 0 13 4 4 50 -4 1 B> 4 0 13 4 4 51 -5 1 <B 1 0 13 4 4 52 -4 4 B> 1 0 13 4 4 53 -3 4 4 B> 0 13 4 4 54 -4 4 4 <A 0 13 4 4 55 -3 4 3 A> 0 13 4 4 56 -2 4 3 1 B> 13 4 4 + 59 1 4 3 1 43 B> 4 4 60 0 4 3 1 43 <B 1 4 + 63 -3 4 3 1 <B 14 4 64 -2 4 3 4 B> 14 4 + 68 2 4 3 45 B> 4 69 1 4 3 45 <B 1 + 74 -4 4 3 <B 16 75 -3 4 0 B> 16 + 81 3 4 0 46 B> 82 2 4 0 46 <A 83 3 4 0 45 3 A> 84 4 4 0 45 3 1 B> 85 3 4 0 45 3 1 <A 86 4 4 0 45 3 2 B> 87 3 4 0 45 3 2 <A 88 4 4 0 45 3 3 B> 89 3 4 0 45 3 3 <A + 91 1 4 0 45 <A 4 4 92 2 4 0 44 3 A> 4 4 + 94 4 4 0 44 33 A> 95 5 4 0 44 33 1 B> 96 4 4 0 44 33 1 <A 97 5 4 0 44 33 2 B> 98 4 4 0 44 33 2 <A 99 5 4 0 44 34 B> 100 4 4 0 44 34 <A + 104 0 4 0 44 <A 44 105 1 4 0 43 3 A> 44 + 109 5 4 0 43 35 A> 110 6 4 0 43 35 1 B> 111 5 4 0 43 35 1 <A 112 6 4 0 43 35 2 B> 113 5 4 0 43 35 2 <A 114 6 4 0 43 36 B> 115 5 4 0 43 36 <A + 121 -1 4 0 43 <A 46 122 0 4 0 4 4 3 A> 46 + 128 6 4 0 4 4 37 A> 129 7 4 0 4 4 37 1 B> 130 6 4 0 4 4 37 1 <A 131 7 4 0 4 4 37 2 B> 132 6 4 0 4 4 37 2 <A 133 7 4 0 4 4 38 B> 134 6 4 0 4 4 38 <A + 142 -2 4 0 4 4 <A 48 143 -1 4 0 4 3 A> 48 + 151 7 4 0 4 39 A> 152 8 4 0 4 39 1 B> 153 7 4 0 4 39 1 <A 154 8 4 0 4 39 2 B> 155 7 4 0 4 39 2 <A 156 8 4 0 4 310 B> 157 7 4 0 4 310 <A + 167 -3 4 0 4 <A 410 168 -2 4 0 3 A> 410 + 178 8 4 0 311 A> 179 9 4 0 311 1 B> 180 8 4 0 311 1 <A 181 9 4 0 311 2 B> 182 8 4 0 311 2 <A 183 9 4 0 312 B> 184 8 4 0 312 <A + 196 -4 4 0 <A 412 197 -3 4 1 B> 412 198 -4 4 1 <B 1 411 199 -3 4 4 B> 1 411 200 -2 43 B> 411 201 -3 43 <B 1 410 + 204 -6 <B 14 410 205 -7 <A 0 14 410 206 -6 1 B> 0 14 410 207 -7 1 <A 0 14 410 208 -6 2 B> 0 14 410 209 -7 2 <A 0 14 410 210 -6 3 B> 0 14 410 211 -7 3 <A 0 14 410 212 -8 <A 4 0 14 410 213 -7 1 B> 4 0 14 410 214 -8 1 <B 1 0 14 410 215 -7 4 B> 1 0 14 410 216 -6 4 4 B> 0 14 410 217 -7 4 4 <A 0 14 410 218 -6 4 3 A> 0 14 410 219 -5 4 3 1 B> 14 410 + 223 -1 4 3 1 44 B> 410 224 -2 4 3 1 44 <B 1 49 + 228 -6 4 3 1 <B 15 49 229 -5 4 3 4 B> 15 49 + 234 0 4 3 46 B> 49 235 -1 4 3 46 <B 1 48 + 241 -7 4 3 <B 17 48 242 -6 4 0 B> 17 48 + 249 1 4 0 47 B> 48 250 0 4 0 47 <B 1 47 + 257 -7 4 0 <B 18 47 258 -8 4 <A 0 18 47 259 -7 3 A> 0 18 47 260 -6 3 1 B> 18 47 + 268 2 3 1 48 B> 47 269 1 3 1 48 <B 1 46 + 277 -7 3 1 <B 19 46 278 -6 3 4 B> 19 46 + 287 3 3 410 B> 46 288 2 3 410 <B 1 45 + 298 -8 3 <B 111 45 299 -7 B> 111 45 + 310 4 411 B> 45 311 3 411 <B 1 44 + 322 -8 <B 112 44 323 -9 <A 0 112 44 324 -8 1 B> 0 112 44 325 -9 1 <A 0 112 44 326 -8 2 B> 0 112 44 327 -9 2 <A 0 112 44 328 -8 3 B> 0 112 44 329 -9 3 <A 0 112 44 330 -10 <A 4 0 112 44 331 -9 1 B> 4 0 112 44 332 -10 1 <B 1 0 112 44 333 -9 4 B> 1 0 112 44 334 -8 4 4 B> 0 112 44 335 -9 4 4 <A 0 112 44 336 -8 4 3 A> 0 112 44 337 -7 4 3 1 B> 112 44 + 349 5 4 3 1 412 B> 44 350 4 4 3 1 412 <B 1 43 + 362 -8 4 3 1 <B 113 43 363 -7 4 3 4 B> 113 43 + 376 6 4 3 414 B> 43 377 5 4 3 414 <B 1 4 4 + 391 -9 4 3 <B 115 4 4 392 -8 4 0 B> 115 4 4 + 407 7 4 0 415 B> 4 4 408 6 4 0 415 <B 1 4 + 423 -9 4 0 <B 116 4 424 -10 4 <A 0 116 4 425 -9 3 A> 0 116 4 426 -8 3 1 B> 116 4 + 442 8 3 1 416 B> 4 443 7 3 1 416 <B 1 + 459 -9 3 1 <B 117 460 -8 3 4 B> 117 + 477 9 3 418 B> 478 8 3 418 <A 479 9 3 417 3 A> 480 10 3 417 3 1 B> 481 9 3 417 3 1 <A 482 10 3 417 3 2 B> 483 9 3 417 3 2 <A 484 10 3 417 3 3 B> After 484 steps (201 lines): state = B. Produced 20 nonzeros. Tape index 10, scanned [-10 .. 10].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 148 | 24 | 13 | 13 | 52 | 46 | 0 | 2 | 4 | 6 | 12 |
B | 336 | 49 | 147 | 4 | 136 | 1 | 9 | 74 | 8 |