2-state 5-symbol TM #c (G. Lafitte & C. Papazian)

Comment: This TM produces 97'104 nonzeros in 7'543'673'517 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R B2R B3R A4L A3R 1 right B 2 right B 3 right B 4 left A 3 right A
B A0L B4R Z1R B0R B1L 0 left A 4 right B 1 right Z 0 right B 1 left B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A
     3     1  2 B>
     4     0  2 <A
     5     1  3 B>
     6     0  3 <A
     7    -1  <A 4
     8     0  1 B> 4
     9    -1  1 <B 1
    10     0  4 B> 1
    11     1  4 4 B>
    12     0  4 4 <A
    13     1  4 3 A>
    14     2  4 3 1 B>
    15     1  4 3 1 <A
    16     2  4 3 2 B>
    17     1  4 3 2 <A
    18     2  4 3 3 B>
    19     1  4 3 3 <A
+   21    -1  4 <A 4 4
    22     0  3 A> 4 4
+   24     2  33 A>
    25     3  33 1 B>
    26     2  33 1 <A
    27     3  33 2 B>
    28     2  33 2 <A
    29     3  34 B>
    30     2  34 <A
+   34    -2  <A 44
    35    -1  1 B> 44
    36    -2  1 <B 1 43
    37    -1  4 B> 1 43
    38     0  4 4 B> 43
    39    -1  4 4 <B 1 4 4
+   41    -3  <B 13 4 4
    42    -4  <A 0 13 4 4
    43    -3  1 B> 0 13 4 4
    44    -4  1 <A 0 13 4 4
    45    -3  2 B> 0 13 4 4
    46    -4  2 <A 0 13 4 4
    47    -3  3 B> 0 13 4 4
    48    -4  3 <A 0 13 4 4
    49    -5  <A 4 0 13 4 4
    50    -4  1 B> 4 0 13 4 4
    51    -5  1 <B 1 0 13 4 4
    52    -4  4 B> 1 0 13 4 4
    53    -3  4 4 B> 0 13 4 4
    54    -4  4 4 <A 0 13 4 4
    55    -3  4 3 A> 0 13 4 4
    56    -2  4 3 1 B> 13 4 4
+   59     1  4 3 1 43 B> 4 4
    60     0  4 3 1 43 <B 1 4
+   63    -3  4 3 1 <B 14 4
    64    -2  4 3 4 B> 14 4
+   68     2  4 3 45 B> 4
    69     1  4 3 45 <B 1
+   74    -4  4 3 <B 16
    75    -3  4 0 B> 16
+   81     3  4 0 46 B>
    82     2  4 0 46 <A
    83     3  4 0 45 3 A>
    84     4  4 0 45 3 1 B>
    85     3  4 0 45 3 1 <A
    86     4  4 0 45 3 2 B>
    87     3  4 0 45 3 2 <A
    88     4  4 0 45 3 3 B>
    89     3  4 0 45 3 3 <A
+   91     1  4 0 45 <A 4 4
    92     2  4 0 44 3 A> 4 4
+   94     4  4 0 44 33 A>
    95     5  4 0 44 33 1 B>
    96     4  4 0 44 33 1 <A
    97     5  4 0 44 33 2 B>
    98     4  4 0 44 33 2 <A
    99     5  4 0 44 34 B>
   100     4  4 0 44 34 <A
+  104     0  4 0 44 <A 44
   105     1  4 0 43 3 A> 44
+  109     5  4 0 43 35 A>
   110     6  4 0 43 35 1 B>
   111     5  4 0 43 35 1 <A
   112     6  4 0 43 35 2 B>
   113     5  4 0 43 35 2 <A
   114     6  4 0 43 36 B>
   115     5  4 0 43 36 <A
+  121    -1  4 0 43 <A 46
   122     0  4 0 4 4 3 A> 46
+  128     6  4 0 4 4 37 A>
   129     7  4 0 4 4 37 1 B>
   130     6  4 0 4 4 37 1 <A
   131     7  4 0 4 4 37 2 B>
   132     6  4 0 4 4 37 2 <A
   133     7  4 0 4 4 38 B>
   134     6  4 0 4 4 38 <A
+  142    -2  4 0 4 4 <A 48
   143    -1  4 0 4 3 A> 48
+  151     7  4 0 4 39 A>
   152     8  4 0 4 39 1 B>
   153     7  4 0 4 39 1 <A
   154     8  4 0 4 39 2 B>
   155     7  4 0 4 39 2 <A
   156     8  4 0 4 310 B>
   157     7  4 0 4 310 <A
+  167    -3  4 0 4 <A 410
   168    -2  4 0 3 A> 410
+  178     8  4 0 311 A>
   179     9  4 0 311 1 B>
   180     8  4 0 311 1 <A
   181     9  4 0 311 2 B>
   182     8  4 0 311 2 <A
   183     9  4 0 312 B>
   184     8  4 0 312 <A
+  196    -4  4 0 <A 412
   197    -3  4 1 B> 412
   198    -4  4 1 <B 1 411
   199    -3  4 4 B> 1 411
   200    -2  43 B> 411
   201    -3  43 <B 1 410
+  204    -6  <B 14 410
   205    -7  <A 0 14 410
   206    -6  1 B> 0 14 410
   207    -7  1 <A 0 14 410
   208    -6  2 B> 0 14 410
   209    -7  2 <A 0 14 410
   210    -6  3 B> 0 14 410
   211    -7  3 <A 0 14 410
   212    -8  <A 4 0 14 410
   213    -7  1 B> 4 0 14 410
   214    -8  1 <B 1 0 14 410
   215    -7  4 B> 1 0 14 410
   216    -6  4 4 B> 0 14 410
   217    -7  4 4 <A 0 14 410
   218    -6  4 3 A> 0 14 410
   219    -5  4 3 1 B> 14 410
+  223    -1  4 3 1 44 B> 410
   224    -2  4 3 1 44 <B 1 49
+  228    -6  4 3 1 <B 15 49
   229    -5  4 3 4 B> 15 49
+  234     0  4 3 46 B> 49
   235    -1  4 3 46 <B 1 48
+  241    -7  4 3 <B 17 48
   242    -6  4 0 B> 17 48
+  249     1  4 0 47 B> 48
   250     0  4 0 47 <B 1 47
+  257    -7  4 0 <B 18 47
   258    -8  4 <A 0 18 47
   259    -7  3 A> 0 18 47
   260    -6  3 1 B> 18 47
+  268     2  3 1 48 B> 47
   269     1  3 1 48 <B 1 46
+  277    -7  3 1 <B 19 46
   278    -6  3 4 B> 19 46
+  287     3  3 410 B> 46
   288     2  3 410 <B 1 45
+  298    -8  3 <B 111 45
   299    -7  B> 111 45
+  310     4  411 B> 45
   311     3  411 <B 1 44
+  322    -8  <B 112 44
   323    -9  <A 0 112 44
   324    -8  1 B> 0 112 44
   325    -9  1 <A 0 112 44
   326    -8  2 B> 0 112 44
   327    -9  2 <A 0 112 44
   328    -8  3 B> 0 112 44
   329    -9  3 <A 0 112 44
   330   -10  <A 4 0 112 44
   331    -9  1 B> 4 0 112 44
   332   -10  1 <B 1 0 112 44
   333    -9  4 B> 1 0 112 44
   334    -8  4 4 B> 0 112 44
   335    -9  4 4 <A 0 112 44
   336    -8  4 3 A> 0 112 44
   337    -7  4 3 1 B> 112 44
+  349     5  4 3 1 412 B> 44
   350     4  4 3 1 412 <B 1 43
+  362    -8  4 3 1 <B 113 43
   363    -7  4 3 4 B> 113 43
+  376     6  4 3 414 B> 43
   377     5  4 3 414 <B 1 4 4
+  391    -9  4 3 <B 115 4 4
   392    -8  4 0 B> 115 4 4
+  407     7  4 0 415 B> 4 4
   408     6  4 0 415 <B 1 4
+  423    -9  4 0 <B 116 4
   424   -10  4 <A 0 116 4
   425    -9  3 A> 0 116 4
   426    -8  3 1 B> 116 4
+  442     8  3 1 416 B> 4
   443     7  3 1 416 <B 1
+  459    -9  3 1 <B 117
   460    -8  3 4 B> 117
+  477     9  3 418 B>
   478     8  3 418 <A
   479     9  3 417 3 A>
   480    10  3 417 3 1 B>
   481     9  3 417 3 1 <A
   482    10  3 417 3 2 B>
   483     9  3 417 3 2 <A
   484    10  3 417 3 3 B>

After 484 steps (201 lines): state = B.
Produced     20 nonzeros.
Tape index 10, scanned [-10 .. 10].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 148 24 13 13 52 46 0 2 4 6 12
B 336 49 147   4 136 1 9   74 8
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:55 CEST 2010