Comment: This TM produces 97'104 nonzeros in 7'543'673'517 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | B2R | B3R | A4L | A3R | 1 | right | B | 2 | right | B | 3 | right | B | 4 | left | A | 3 | right | A |
| B | A0L | B4R | Z1R | B0R | B1L | 0 | left | A | 4 | right | B | 1 | right | Z | 0 | right | B | 1 | left | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A
3 1 2 B>
4 0 2 <A
5 1 3 B>
6 0 3 <A
7 -1 <A 4
8 0 1 B> 4
9 -1 1 <B 1
10 0 4 B> 1
11 1 4 4 B>
12 0 4 4 <A
13 1 4 3 A>
14 2 4 3 1 B>
15 1 4 3 1 <A
16 2 4 3 2 B>
17 1 4 3 2 <A
18 2 4 3 3 B>
19 1 4 3 3 <A
+ 21 -1 4 <A 4 4
22 0 3 A> 4 4
+ 24 2 33 A>
25 3 33 1 B>
26 2 33 1 <A
27 3 33 2 B>
28 2 33 2 <A
29 3 34 B>
30 2 34 <A
+ 34 -2 <A 44
35 -1 1 B> 44
36 -2 1 <B 1 43
37 -1 4 B> 1 43
38 0 4 4 B> 43
39 -1 4 4 <B 1 4 4
+ 41 -3 <B 13 4 4
42 -4 <A 0 13 4 4
43 -3 1 B> 0 13 4 4
44 -4 1 <A 0 13 4 4
45 -3 2 B> 0 13 4 4
46 -4 2 <A 0 13 4 4
47 -3 3 B> 0 13 4 4
48 -4 3 <A 0 13 4 4
49 -5 <A 4 0 13 4 4
50 -4 1 B> 4 0 13 4 4
51 -5 1 <B 1 0 13 4 4
52 -4 4 B> 1 0 13 4 4
53 -3 4 4 B> 0 13 4 4
54 -4 4 4 <A 0 13 4 4
55 -3 4 3 A> 0 13 4 4
56 -2 4 3 1 B> 13 4 4
+ 59 1 4 3 1 43 B> 4 4
60 0 4 3 1 43 <B 1 4
+ 63 -3 4 3 1 <B 14 4
64 -2 4 3 4 B> 14 4
+ 68 2 4 3 45 B> 4
69 1 4 3 45 <B 1
+ 74 -4 4 3 <B 16
75 -3 4 0 B> 16
+ 81 3 4 0 46 B>
82 2 4 0 46 <A
83 3 4 0 45 3 A>
84 4 4 0 45 3 1 B>
85 3 4 0 45 3 1 <A
86 4 4 0 45 3 2 B>
87 3 4 0 45 3 2 <A
88 4 4 0 45 3 3 B>
89 3 4 0 45 3 3 <A
+ 91 1 4 0 45 <A 4 4
92 2 4 0 44 3 A> 4 4
+ 94 4 4 0 44 33 A>
95 5 4 0 44 33 1 B>
96 4 4 0 44 33 1 <A
97 5 4 0 44 33 2 B>
98 4 4 0 44 33 2 <A
99 5 4 0 44 34 B>
100 4 4 0 44 34 <A
+ 104 0 4 0 44 <A 44
105 1 4 0 43 3 A> 44
+ 109 5 4 0 43 35 A>
110 6 4 0 43 35 1 B>
111 5 4 0 43 35 1 <A
112 6 4 0 43 35 2 B>
113 5 4 0 43 35 2 <A
114 6 4 0 43 36 B>
115 5 4 0 43 36 <A
+ 121 -1 4 0 43 <A 46
122 0 4 0 4 4 3 A> 46
+ 128 6 4 0 4 4 37 A>
129 7 4 0 4 4 37 1 B>
130 6 4 0 4 4 37 1 <A
131 7 4 0 4 4 37 2 B>
132 6 4 0 4 4 37 2 <A
133 7 4 0 4 4 38 B>
134 6 4 0 4 4 38 <A
+ 142 -2 4 0 4 4 <A 48
143 -1 4 0 4 3 A> 48
+ 151 7 4 0 4 39 A>
152 8 4 0 4 39 1 B>
153 7 4 0 4 39 1 <A
154 8 4 0 4 39 2 B>
155 7 4 0 4 39 2 <A
156 8 4 0 4 310 B>
157 7 4 0 4 310 <A
+ 167 -3 4 0 4 <A 410
168 -2 4 0 3 A> 410
+ 178 8 4 0 311 A>
179 9 4 0 311 1 B>
180 8 4 0 311 1 <A
181 9 4 0 311 2 B>
182 8 4 0 311 2 <A
183 9 4 0 312 B>
184 8 4 0 312 <A
+ 196 -4 4 0 <A 412
197 -3 4 1 B> 412
198 -4 4 1 <B 1 411
199 -3 4 4 B> 1 411
200 -2 43 B> 411
201 -3 43 <B 1 410
+ 204 -6 <B 14 410
205 -7 <A 0 14 410
206 -6 1 B> 0 14 410
207 -7 1 <A 0 14 410
208 -6 2 B> 0 14 410
209 -7 2 <A 0 14 410
210 -6 3 B> 0 14 410
211 -7 3 <A 0 14 410
212 -8 <A 4 0 14 410
213 -7 1 B> 4 0 14 410
214 -8 1 <B 1 0 14 410
215 -7 4 B> 1 0 14 410
216 -6 4 4 B> 0 14 410
217 -7 4 4 <A 0 14 410
218 -6 4 3 A> 0 14 410
219 -5 4 3 1 B> 14 410
+ 223 -1 4 3 1 44 B> 410
224 -2 4 3 1 44 <B 1 49
+ 228 -6 4 3 1 <B 15 49
229 -5 4 3 4 B> 15 49
+ 234 0 4 3 46 B> 49
235 -1 4 3 46 <B 1 48
+ 241 -7 4 3 <B 17 48
242 -6 4 0 B> 17 48
+ 249 1 4 0 47 B> 48
250 0 4 0 47 <B 1 47
+ 257 -7 4 0 <B 18 47
258 -8 4 <A 0 18 47
259 -7 3 A> 0 18 47
260 -6 3 1 B> 18 47
+ 268 2 3 1 48 B> 47
269 1 3 1 48 <B 1 46
+ 277 -7 3 1 <B 19 46
278 -6 3 4 B> 19 46
+ 287 3 3 410 B> 46
288 2 3 410 <B 1 45
+ 298 -8 3 <B 111 45
299 -7 B> 111 45
+ 310 4 411 B> 45
311 3 411 <B 1 44
+ 322 -8 <B 112 44
323 -9 <A 0 112 44
324 -8 1 B> 0 112 44
325 -9 1 <A 0 112 44
326 -8 2 B> 0 112 44
327 -9 2 <A 0 112 44
328 -8 3 B> 0 112 44
329 -9 3 <A 0 112 44
330 -10 <A 4 0 112 44
331 -9 1 B> 4 0 112 44
332 -10 1 <B 1 0 112 44
333 -9 4 B> 1 0 112 44
334 -8 4 4 B> 0 112 44
335 -9 4 4 <A 0 112 44
336 -8 4 3 A> 0 112 44
337 -7 4 3 1 B> 112 44
+ 349 5 4 3 1 412 B> 44
350 4 4 3 1 412 <B 1 43
+ 362 -8 4 3 1 <B 113 43
363 -7 4 3 4 B> 113 43
+ 376 6 4 3 414 B> 43
377 5 4 3 414 <B 1 4 4
+ 391 -9 4 3 <B 115 4 4
392 -8 4 0 B> 115 4 4
+ 407 7 4 0 415 B> 4 4
408 6 4 0 415 <B 1 4
+ 423 -9 4 0 <B 116 4
424 -10 4 <A 0 116 4
425 -9 3 A> 0 116 4
426 -8 3 1 B> 116 4
+ 442 8 3 1 416 B> 4
443 7 3 1 416 <B 1
+ 459 -9 3 1 <B 117
460 -8 3 4 B> 117
+ 477 9 3 418 B>
478 8 3 418 <A
479 9 3 417 3 A>
480 10 3 417 3 1 B>
481 9 3 417 3 1 <A
482 10 3 417 3 2 B>
483 9 3 417 3 2 <A
484 10 3 417 3 3 B>
After 484 steps (201 lines): state = B.
Produced 20 nonzeros.
Tape index 10, scanned [-10 .. 10].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 148 | 24 | 13 | 13 | 52 | 46 | 0 | 2 | 4 | 6 | 12 |
| B | 336 | 49 | 147 | 4 | 136 | 1 | 9 | 74 | 8 | ||