Comment: This TM produces >3.5x10^18267 ones in >7.4x10^36534 steps. Comment: This is the currently best known 6x2 TM (since Jul-2010)
| State | on 0 |
on 1 |
on 0 | on 1 | ||||
|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | |||||
| A | B1R | E1L | 1 | right | B | 1 | left | E |
| B | C1R | F1R | 1 | right | C | 1 | right | F |
| C | D1L | B0R | 1 | left | D | 0 | right | B |
| D | E1R | C0L | 1 | right | E | 0 | left | C |
| E | A1L | D0R | 1 | left | A | 0 | right | D |
| F | H1L | C1R | 1 | left | H | 1 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-bck-3-macro machine.
The same TM as 2-bck-3-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 2.
Pushing BCK machine.
Pushing macro factor 3.
Steps BasSteps BasTpos Tape contents
0 0 0 <A(00)
1 7 3 (10)B>
2 12 0 <C(01) 010000
3 17 3 000010 (10)D> 010000
4 26 0 000010 <E(11) 111100
5 35 3 001110 (11)C> 111100
6 49 9 001110 110010 (10)B>
7 54 6 001110 110010 <C(01) 010000
8 63 9 001110 111010 (10)D> 010000
9 72 6 001110 111010 <E(11) 111100
10 80 0 001110 <C(01) 011111 111100
11 87 3 001010 (10)B> 011111 111100
12 93 9 001010 101011 (01)F> 111100
13 103 15 001010 101011 011001 (01)C>
14 106 12 001010 101011 011001 <D(10) 100000
15 113 15 001010 101011 011101 (01)E> 100000
16 120 12 001010 101011 011101 <A(11) 111000
17 128 6 001010 101011 <D(10) 101111 111000
18 133 9 001010 101001 (01)C> 101111 111000
19 139 15 001010 101001 010101 (10)B> 111000
20 153 21 001010 101001 010101 100101 (01)C>
21 156 18 001010 101001 010101 100101 <D(10) 100000
22 167 21 001010 101001 010101 110101 (01)E> 100000
23 174 18 001010 101001 010101 110101 <A(11) 111000
24 182 12 001010 101001 010101 <D(10) 111111 111000
25 188 6 001010 101001 <D(10) 101010 111111 111000
26 195 9 001010 101101 (01)E> 101010 111111 111000
27 201 15 001010 101101 010101 (01)E> 111111 111000
28 206 12 001010 101101 010101 <D(10) 101111 111000
29 212 6 001010 101101 <D(10) 101010 101111 111000
30 221 9 001010 100101 (01)C> 101010 101111 111000
31 227 15 001010 100101 010101 (01)C> 101111 111000
32 233 21 001010 100101 0101012 (10)B> 111000
33 247 27 001010 100101 0101012 100101 (01)C>
34 250 24 001010 100101 0101012 100101 <D(10) 100000
35 261 27 001010 100101 0101012 110101 (01)E> 100000
36 268 24 001010 100101 0101012 110101 <A(11) 111000
37 276 18 001010 100101 0101012 <D(10) 111111 111000
38 288 6 001010 100101 <D(10) 1010102 111111 111000
39 299 9 001010 110101 (01)E> 1010102 111111 111000
40 311 21 001010 110101 0101012 (01)E> 111111 111000
41 316 18 001010 110101 0101012 <D(10) 101111 111000
42 328 6 001010 110101 <D(10) 1010102 101111 111000
43 341 9 001010 010101 (01)C> 1010102 101111 111000
44 353 21 001010 0101013 (01)C> 101111 111000
45 359 27 001010 0101014 (10)B> 111000
46 373 33 001010 0101014 100101 (01)C>
47 376 30 001010 0101014 100101 <D(10) 100000
48 387 33 001010 0101014 110101 (01)E> 100000
49 394 30 001010 0101014 110101 <A(11) 111000
50 402 24 001010 0101014 <D(10) 111111 111000
51 426 0 001010 <D(10) 1010104 111111 111000
52 429 3 001011 (01)E> 1010104 111111 111000
53 453 27 001011 0101014 (01)E> 111111 111000
54 458 24 001011 0101014 <D(10) 101111 111000
55 482 0 001011 <D(10) 1010104 101111 111000
56 487 3 001001 (01)C> 1010104 101111 111000
57 511 27 001001 0101014 (01)C> 101111 111000
58 517 33 001001 0101015 (10)B> 111000
59 531 39 001001 0101015 100101 (01)C>
60 534 36 001001 0101015 100101 <D(10) 100000
61 545 39 001001 0101015 110101 (01)E> 100000
62 552 36 001001 0101015 110101 <A(11) 111000
63 560 30 001001 0101015 <D(10) 111111 111000
64 590 0 001001 <D(10) 1010105 111111 111000
65 597 3 001101 (01)E> 1010105 111111 111000
66 627 33 001101 0101015 (01)E> 111111 111000
67 632 30 001101 0101015 <D(10) 101111 111000
68 662 0 001101 <D(10) 1010105 101111 111000
69 671 3 000101 (01)C> 1010105 101111 111000
70 701 33 000101 0101015 (01)C> 101111 111000
71 707 39 000101 0101016 (10)B> 111000
72 721 45 000101 0101016 100101 (01)C>
73 724 42 000101 0101016 100101 <D(10) 100000
74 735 45 000101 0101016 110101 (01)E> 100000
75 742 42 000101 0101016 110101 <A(11) 111000
76 750 36 000101 0101016 <D(10) 111111 111000
77 786 0 000101 <D(10) 1010106 111111 111000
78 797 3 010101 (01)E> 1010106 111111 111000
79 833 39 0101017 (01)E> 111111 111000
80 838 36 0101017 <D(10) 101111 111000
81 880 -6 <D(10) 1010107 101111 111000
82 883 -3 000001 (01)E> 1010107 101111 111000
83 925 39 000001 0101017 (01)E> 101111 111000
84 934 36 000001 0101017 <D(10) 101011 111000
85 976 -6 000001 <D(10) 1010107 101011 111000
86 983 -3 000101 (01)E> 1010107 101011 111000
87 1025 39 000101 0101017 (01)E> 101011 111000
88 1038 36 000101 0101017 <D(10) 101010 111000
89 1080 -6 000101 <D(10) 1010108 111000
90 1091 -3 010101 (01)E> 1010108 111000
91 1139 45 0101019 (01)E> 111000
92 1144 42 0101019 <D(10) 101000
93 1198 -12 <D(10) 1010109 101000
94 1201 -9 000001 (01)E> 1010109 101000
95 1255 45 000001 0101019 (01)E> 101000
96 1266 42 000001 0101019 <A(11) 111110
97 1320 -12 000001 <A(11) 1111119 111110
98 1327 -9 000111 (01)F> 1111119 111110
99 1381 45 000111 0110119 (01)F> 111110
100 1387 51 000111 01101110 (01)C>
101 1390 48 000111 01101110 <D(10) 100000
102 1395 51 000111 0110119 011001 (01)C> 100000
103 1402 48 000111 0110119 011001 <D(10) 101000
104 1409 51 000111 0110119 011101 (01)E> 101000
105 1420 48 000111 0110119 011101 <A(11) 111110
106 1428 42 000111 0110119 <D(10) 101111 111110
107 1433 45 000111 0110118 011001 (01)C> 101111 111110
108 1439 51 000111 0110118 011001 010101 (10)B> 111110
109 1449 57 000111 0110118 011001 010101 101100 (10)B>
110 1454 54 000111 0110118 011001 010101 101100 <C(01) 010000
111 1459 57 000111 0110118 011001 010101 101110 (10)D> 010000
112 1468 54 000111 0110118 011001 010101 101110 <E(11) 111100
113 1476 48 000111 0110118 011001 010101 <C(01) 010111 111100
114 1479 51 000111 0110118 011001 010100 (10)B> 010111 111100
115 1485 57 000111 0110118 011001 010100 101010 (11)C> 111100
116 1499 63 000111 0110118 011001 010100 101010 110010 (10)B>
117 1504 60 000111 0110118 011001 010100 101010 110010 <C(01) 010000
118 1513 63 000111 0110118 011001 010100 101010 111010 (10)D> 010000
119 1522 60 000111 0110118 011001 010100 101010 111010 <E(11) 111100
120 1530 54 000111 0110118 011001 010100 101010 <C(01) 011111 111100
121 1536 48 000111 0110118 011001 010100 <C(01) 010101 011111 111100
122 1541 51 000111 0110118 011001 010110 (10)D> 010101 011111 111100
123 1547 57 000111 0110118 011001 010110 101010 (10)D> 011111 111100
124 1554 54 000111 0110118 011001 010110 101010 <C(01) 010111 111100
125 1560 48 000111 0110118 011001 010110 <C(01) 010101 010111 111100
126 1567 51 000111 0110118 011001 010010 (10)B> 010101 010111 111100
127 1573 57 000111 0110118 011001 010010 101010 (10)B> 010111 111100
128 1579 63 000111 0110118 011001 010010 1010102 (11)C> 111100
129 1593 69 000111 0110118 011001 010010 1010102 110010 (10)B>
130 1598 66 000111 0110118 011001 010010 1010102 110010 <C(01) 010000
131 1607 69 000111 0110118 011001 010010 1010102 111010 (10)D> 010000
132 1616 66 000111 0110118 011001 010010 1010102 111010 <E(11) 111100
133 1624 60 000111 0110118 011001 010010 1010102 <C(01) 011111 111100
134 1636 48 000111 0110118 011001 010010 <C(01) 0101012 011111 111100
135 1645 51 000111 0110118 011001 011010 (10)D> 0101012 011111 111100
136 1657 63 000111 0110118 011001 011010 1010102 (10)D> 011111 111100
137 1664 60 000111 0110118 011001 011010 1010102 <C(01) 010111 111100
138 1676 48 000111 0110118 011001 011010 <C(01) 0101012 010111 111100
139 1687 51 000111 0110118 011001 001010 (10)B> 0101012 010111 111100
140 1699 63 000111 0110118 011001 001010 1010102 (10)B> 010111 111100
141 1705 69 000111 0110118 011001 001010 1010103 (11)C> 111100
142 1719 75 000111 0110118 011001 001010 1010103 110010 (10)B>
143 1724 72 000111 0110118 011001 001010 1010103 110010 <C(01) 010000
144 1733 75 000111 0110118 011001 001010 1010103 111010 (10)D> 010000
145 1742 72 000111 0110118 011001 001010 1010103 111010 <E(11) 111100
146 1750 66 000111 0110118 011001 001010 1010103 <C(01) 011111 111100
147 1768 48 000111 0110118 011001 001010 <C(01) 0101013 011111 111100
148 1781 51 000111 0110118 011001 101010 (10)D> 0101013 011111 111100
149 1799 69 000111 0110118 011001 1010104 (10)D> 011111 111100
150 1806 66 000111 0110118 011001 1010104 <C(01) 010111 111100
151 1830 42 000111 0110118 011001 <C(01) 0101014 010111 111100
152 1833 45 000111 0110118 011000 (10)B> 0101014 010111 111100
153 1857 69 000111 0110118 011000 1010104 (10)B> 010111 111100
154 1863 75 000111 0110118 011000 1010105 (11)C> 111100
155 1877 81 000111 0110118 011000 1010105 110010 (10)B>
156 1882 78 000111 0110118 011000 1010105 110010 <C(01) 010000
157 1891 81 000111 0110118 011000 1010105 111010 (10)D> 010000
158 1900 78 000111 0110118 011000 1010105 111010 <E(11) 111100
159 1908 72 000111 0110118 011000 1010105 <C(01) 011111 111100
160 1938 42 000111 0110118 011000 <C(01) 0101015 011111 111100
161 1943 45 000111 0110118 011010 (10)D> 0101015 011111 111100
162 1973 75 000111 0110118 011010 1010105 (10)D> 011111 111100
163 1980 72 000111 0110118 011010 1010105 <C(01) 010111 111100
164 2010 42 000111 0110118 011010 <C(01) 0101015 010111 111100
165 2021 45 000111 0110118 001010 (10)B> 0101015 010111 111100
166 2051 75 000111 0110118 001010 1010105 (10)B> 010111 111100
167 2057 81 000111 0110118 001010 1010106 (11)C> 111100
168 2071 87 000111 0110118 001010 1010106 110010 (10)B>
169 2076 84 000111 0110118 001010 1010106 110010 <C(01) 010000
170 2085 87 000111 0110118 001010 1010106 111010 (10)D> 010000
171 2094 84 000111 0110118 001010 1010106 111010 <E(11) 111100
172 2102 78 000111 0110118 001010 1010106 <C(01) 011111 111100
173 2138 42 000111 0110118 001010 <C(01) 0101016 011111 111100
174 2151 45 000111 0110118 101010 (10)D> 0101016 011111 111100
175 2187 81 000111 0110118 1010107 (10)D> 011111 111100
176 2194 78 000111 0110118 1010107 <C(01) 010111 111100
177 2236 36 000111 0110118 <C(01) 0101017 010111 111100
178 2239 39 000111 0110117 011010 (10)B> 0101017 010111 111100
179 2281 81 000111 0110117 011010 1010107 (10)B> 010111 111100
180 2287 87 000111 0110117 011010 1010108 (11)C> 111100
181 2301 93 000111 0110117 011010 1010108 110010 (10)B>
182 2306 90 000111 0110117 011010 1010108 110010 <C(01) 010000
183 2315 93 000111 0110117 011010 1010108 111010 (10)D> 010000
184 2324 90 000111 0110117 011010 1010108 111010 <E(11) 111100
185 2332 84 000111 0110117 011010 1010108 <C(01) 011111 111100
186 2380 36 000111 0110117 011010 <C(01) 0101018 011111 111100
187 2391 39 000111 0110117 001010 (10)B> 0101018 011111 111100
188 2439 87 000111 0110117 001010 1010108 (10)B> 011111 111100
189 2445 93 000111 0110117 001010 1010108 101011 (01)F> 111100
190 2455 99 000111 0110117 001010 1010108 101011 011001 (01)C>
191 2458 96 000111 0110117 001010 1010108 101011 011001 <D(10) 100000
192 2465 99 000111 0110117 001010 1010108 101011 011101 (01)E> 100000
193 2472 96 000111 0110117 001010 1010108 101011 011101 <A(11) 111000
194 2480 90 000111 0110117 001010 1010108 101011 <D(10) 101111 111000
195 2485 93 000111 0110117 001010 1010108 101001 (01)C> 101111 111000
196 2491 99 000111 0110117 001010 1010108 101001 010101 (10)B> 111000
197 2505 105 000111 0110117 001010 1010108 101001 010101 100101 (01)C>
198 2508 102 000111 0110117 001010 1010108 101001 010101 100101 <D(10) 100000
199 2519 105 000111 0110117 001010 1010108 101001 010101 110101 (01)E> 100000
200 2526 102 000111 0110117 001010 1010108 101001 010101 110101 <A(11) 111000
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 2526
Tape index: 102
ones: 72
log10(ones ): 1.857
log10(steps ): 3.402
Input to awk program:
gohalt 1
T 6-state 2-symbol #b (Pavel Kropitz)
: >3.5x10^18267 >7.4x10^36534
C This is the currently best known 6x2 TM (since Jul-2010)
5T B1R E1L C1R F1R D1L B0R E1R C0L A1L D0R H1L C1R
L 4
iniori L
M 201
pref sim
machv Kro62_b just simple
machv Kro62_b-r with repetitions reduced
machv Kro62_b-1 with tape symbol exponents
machv Kro62_b-m as 2-bck-3-macro machine
machv Kro62_b-a as 2-bck-3-macro machine with pure additive config-TRs
iam Kro62_b-m
mtype 2 0 3
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:09:27 CEST 2010
edate Tue Jul 6 22:09:28 CEST 2010
bnspeed 1
short 7
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:09:27 CEST 2010