6-state 2-symbol #b (Pavel Kropitz)

Comment: This TM produces >3.5x10^18267 ones in >7.4x10^36534 steps.
Comment: This is the currently best known 6x2 TM (since Jul-2010)

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
A B1R E1L 1 right B 1 left E
B C1R F1R 1 right C 1 right F
C D1L B0R 1 left D 0 right B
D E1R C0L 1 right E 0 left C
E A1L D0R 1 left A 0 right D
F H1L C1R 1 left H 1 right C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-3-macro machine.
The same TM as 2-bck-3-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     2  1 1 C>
     3     1  1 1 <D 1
     4     0  1 <C 0 1
     5     1  B> 0 1
     6     2  1 C> 1
     7     3  1 0 B>
     8     4  1 0 1 C>
     9     3  1 0 1 <D 1
    10     2  1 0 <C 0 1
    11     1  1 <D 1 0 1
    12     0  <C 0 1 0 1
    13    -1  <D 1 0 1 0 1
    14     0  1 E> 1 0 1 0 1
    15     1  1 0 D> 0 1 0 1
    16     2  1 0 1 E> 1 0 1
    17     3  1 0 1 0 D> 0 1
    18     4  1 0 1 0 1 E> 1
    19     5  1 0 1 0 1 0 D>
    20     6  1 0 1 0 1 0 1 E>
    21     5  1 0 1 0 1 0 1 <A 1
    22     4  1 0 1 0 1 0 <E 1 1
    23     3  1 0 1 0 1 <A 13
    24     2  1 0 1 0 <E 14
    25     1  1 0 1 <A 15
    26     0  1 0 <E 16
    27    -1  1 <A 17
    28    -2  <E 18
    29    -3  <A 19
    30    -2  1 B> 19
    31    -1  1 1 F> 18
    32     0  13 C> 17
    33     1  13 0 B> 16
    34     2  13 0 1 F> 15
    35     3  13 0 1 1 C> 14
    36     4  13 0 1 1 0 B> 13
    37     5  13 0 1 1 0 1 F> 1 1
    38     6  13 0 1 1 0 1 1 C> 1
    39     7  13 0 1 1 0 1 1 0 B>
    40     8  13 0 1 1 0 1 1 0 1 C>
    41     7  13 0 1 1 0 1 1 0 1 <D 1
    42     6  13 0 1 1 0 1 1 0 <C 0 1
    43     5  13 0 1 1 0 1 1 <D 1 0 1
    44     4  13 0 1 1 0 1 <C 0 1 0 1
    45     5  13 0 1 1 0 0 B> 0 1 0 1
    46     6  13 0 1 1 0 0 1 C> 1 0 1
    47     7  13 0 1 1 0 0 1 0 B> 0 1
    48     8  13 0 1 1 0 0 1 0 1 C> 1
    49     9  13 0 1 1 0 0 1 0 1 0 B>
    50    10  13 0 1 1 0 0 1 0 1 0 1 C>
    51     9  13 0 1 1 0 0 1 0 1 0 1 <D 1
    52     8  13 0 1 1 0 0 1 0 1 0 <C 0 1
    53     7  13 0 1 1 0 0 1 0 1 <D 1 0 1
    54     6  13 0 1 1 0 0 1 0 <C 0 1 0 1
    55     5  13 0 1 1 0 0 1 <D 1 0 1 0 1
    56     4  13 0 1 1 0 0 <C 0 1 0 1 0 1
    57     3  13 0 1 1 0 <D 1 0 1 0 1 0 1
    58     4  13 0 13 E> 1 0 1 0 1 0 1
    59     5  13 0 13 0 D> 0 1 0 1 0 1
    60     6  13 0 13 0 1 E> 1 0 1 0 1
    61     7  13 0 13 0 1 0 D> 0 1 0 1
    62     8  13 0 13 0 1 0 1 E> 1 0 1
    63     9  13 0 13 0 1 0 1 0 D> 0 1
    64    10  13 0 13 0 1 0 1 0 1 E> 1
    65    11  13 0 13 0 1 0 1 0 1 0 D>
    66    12  13 0 13 0 1 0 1 0 1 0 1 E>
    67    11  13 0 13 0 1 0 1 0 1 0 1 <A 1
    68    10  13 0 13 0 1 0 1 0 1 0 <E 1 1
    69     9  13 0 13 0 1 0 1 0 1 <A 13
    70     8  13 0 13 0 1 0 1 0 <E 14
    71     7  13 0 13 0 1 0 1 <A 15
    72     6  13 0 13 0 1 0 <E 16
    73     5  13 0 13 0 1 <A 17
    74     4  13 0 13 0 <E 18
    75     3  13 0 13 <A 19
    76     2  13 0 1 1 <E 110
    77     3  13 0 1 0 D> 110
    78     2  13 0 1 0 <C 0 19
    79     1  13 0 1 <D 1 0 19
    80     0  13 0 <C 0 1 0 19
    81    -1  13 <D 1 0 1 0 19
    82    -2  1 1 <C 0 1 0 1 0 19
    83    -1  1 0 B> 0 1 0 1 0 19
    84     0  1 0 1 C> 1 0 1 0 19
    85     1  1 0 1 0 B> 0 1 0 19
    86     2  1 0 1 0 1 C> 1 0 19
    87     3  1 0 1 0 1 0 B> 0 19
    88     4  1 0 1 0 1 0 1 C> 19
    89     5  1 0 1 0 1 0 1 0 B> 18
    90     6  1 0 1 0 1 0 1 0 1 F> 17
    91     7  1 0 1 0 1 0 1 0 1 1 C> 16
    92     8  1 0 1 0 1 0 1 0 1 1 0 B> 15
    93     9  1 0 1 0 1 0 1 0 1 1 0 1 F> 14
    94    10  1 0 1 0 1 0 1 0 1 1 0 1 1 C> 13
    95    11  1 0 1 0 1 0 1 0 1 1 0 1 1 0 B> 1 1
    96    12  1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 F> 1
    97    13  1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 C>
    98    12  1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 <D 1
    99    11  1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 <C 0 1
   100    12  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 B> 0 1
   101    13  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 C> 1
   102    14  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 B>
   103    15  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 C>
   104    14  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 <D 1
   105    13  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 <C 0 1
   106    12  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 <D 1 0 1
   107    11  1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 <C 0 1 0 1
   108    10  1 0 1 0 1 0 1 0 1 1 0 1 1 0 <D 1 0 1 0 1
   109    11  1 0 1 0 1 0 1 0 1 1 0 13 E> 1 0 1 0 1
   110    12  1 0 1 0 1 0 1 0 1 1 0 13 0 D> 0 1 0 1
   111    13  1 0 1 0 1 0 1 0 1 1 0 13 0 1 E> 1 0 1
   112    14  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 D> 0 1
   113    15  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 E> 1
   114    16  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 0 D>
   115    17  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 0 1 E>
   116    16  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 0 1 <A 1
   117    15  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 0 <E 1 1
   118    14  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 1 <A 13
   119    13  1 0 1 0 1 0 1 0 1 1 0 13 0 1 0 <E 14
   120    12  1 0 1 0 1 0 1 0 1 1 0 13 0 1 <A 15
   121    11  1 0 1 0 1 0 1 0 1 1 0 13 0 <E 16
   122    10  1 0 1 0 1 0 1 0 1 1 0 13 <A 17
   123     9  1 0 1 0 1 0 1 0 1 1 0 1 1 <E 18
   124    10  1 0 1 0 1 0 1 0 1 1 0 1 0 D> 18
   125     9  1 0 1 0 1 0 1 0 1 1 0 1 0 <C 0 17
   126     8  1 0 1 0 1 0 1 0 1 1 0 1 <D 1 0 17
   127     7  1 0 1 0 1 0 1 0 1 1 0 <C 0 1 0 17
   128     6  1 0 1 0 1 0 1 0 1 1 <D 1 0 1 0 17
   129     5  1 0 1 0 1 0 1 0 1 <C 0 1 0 1 0 17
   130     6  1 0 1 0 1 0 1 0 0 B> 0 1 0 1 0 17
   131     7  1 0 1 0 1 0 1 0 0 1 C> 1 0 1 0 17
   132     8  1 0 1 0 1 0 1 0 0 1 0 B> 0 1 0 17
   133     9  1 0 1 0 1 0 1 0 0 1 0 1 C> 1 0 17
   134    10  1 0 1 0 1 0 1 0 0 1 0 1 0 B> 0 17
   135    11  1 0 1 0 1 0 1 0 0 1 0 1 0 1 C> 17
   136    12  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 B> 16
   137    13  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 F> 15
   138    14  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 C> 14
   139    15  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 B> 13
   140    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 F> 1 1
   141    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 C> 1
   142    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 B>
   143    19  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 C>
   144    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 <D 1
   145    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 <C 0 1
   146    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 <D 1 0 1
   147    15  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 <C 0 1 0 1
   148    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 B> 0 1 0 1
   149    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 C> 1 0 1
   150    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 B> 0 1
   151    19  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 C> 1
   152    20  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 B>
   153    21  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 C>
   154    20  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 <D 1
   155    19  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 <C 0 1
   156    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 <D 1 0 1
   157    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 <C 0 1 0 1
   158    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 <D 1 0 1 0 1
   159    15  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 <C 0 1 0 1 0 1
   160    14  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 <D 1 0 1 0 1 0 1
   161    15  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 E> 1 0 1 0 1 0 1
   162    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 D> 0 1 0 1 0 1
   163    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 E> 1 0 1 0 1
   164    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 D> 0 1 0 1
   165    19  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 E> 1 0 1
   166    20  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 D> 0 1
   167    21  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 E> 1
   168    22  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 0 D>
   169    23  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 0 1 E>
   170    22  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 0 1 <A 1
   171    21  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 0 <E 1 1
   172    20  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 1 <A 13
   173    19  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 0 <E 14
   174    18  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 1 <A 15
   175    17  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 0 <E 16
   176    16  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 1 <A 17
   177    15  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 0 <E 18
   178    14  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 13 <A 19
   179    13  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 <E 110
   180    14  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 D> 110
   181    13  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 <C 0 19
   182    12  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 <D 1 0 19
   183    11  1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 <C 0 1 0 19
   184    10  1 0 1 0 1 0 1 0 0 1 0 1 0 1 <D 1 0 1 0 19
   185     9  1 0 1 0 1 0 1 0 0 1 0 1 0 <C 0 1 0 1 0 19
   186     8  1 0 1 0 1 0 1 0 0 1 0 1 <D 1 0 1 0 1 0 19
   187     7  1 0 1 0 1 0 1 0 0 1 0 <C 0 1 0 1 0 1 0 19
   188     6  1 0 1 0 1 0 1 0 0 1 <D 1 0 1 0 1 0 1 0 19
   189     5  1 0 1 0 1 0 1 0 0 <C 0 1 0 1 0 1 0 1 0 19
   190     4  1 0 1 0 1 0 1 0 <D 1 0 1 0 1 0 1 0 1 0 19
   191     5  1 0 1 0 1 0 1 1 E> 1 0 1 0 1 0 1 0 1 0 19
   192     6  1 0 1 0 1 0 1 1 0 D> 0 1 0 1 0 1 0 1 0 19
   193     7  1 0 1 0 1 0 1 1 0 1 E> 1 0 1 0 1 0 1 0 19
   194     8  1 0 1 0 1 0 1 1 0 1 0 D> 0 1 0 1 0 1 0 19
   195     9  1 0 1 0 1 0 1 1 0 1 0 1 E> 1 0 1 0 1 0 19
   196    10  1 0 1 0 1 0 1 1 0 1 0 1 0 D> 0 1 0 1 0 19
   197    11  1 0 1 0 1 0 1 1 0 1 0 1 0 1 E> 1 0 1 0 19
   198    12  1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 D> 0 1 0 19
   199    13  1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 E> 1 0 19
   200    14  1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 D> 0 19

After 200 steps (201 lines): state = D.
Produced     18 ones.
Tape index 14, scanned [-3 .. 23].
State Count Execution count First in step
on 0 on 1 on 0 on 1
A 20 2 18 0 21
B 27 19 8 1 30
C 54 29 25 2 4
D 50 23 27 13 3
E 41 19 22 20 14
F 8   8   31
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-bck-3-macro machine.
The same TM as 2-bck-3-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:09:27 CEST 2010