6-state 2-symbol #a (Pavel Kropitz)

Comment: This TM produces >3.1x10^10566 ones in >3.8x10^21132 steps.
Comment: This was the best 6x2 TM (May-2010..Jul-2010)

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
A B1R D0L 1 right B 0 left D
B C1R F0R 1 right C 0 right F
C C1L A1L 1 left C 1 left A
D E0L H1L 0 left E 1 left H
E A1L B0R 1 left A 0 right B
F C0R E0R 0 right C 0 right E
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 3-macro machine.
The same TM as 3-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    2 C . . 110
     3    1 C . . 111
     4    0 A . . 111
     5   -1 D . .0011
     6   -2 E . 00011
     7   -3 A .010011
     8   -2 B .110011
     9   -1 F .100011
    10    0 C .100011
+   13   -3 C .111111  by C/0 * 3
    14   -4 A 0111111
    15   -3 B 1111111
    16   -2 F 1011111
    17   -1 E 1001111
    18    0 B 1000111
    19    1 F 1000011
    20    2 E 1000001
    21    3 B 10000000
    22    4 C 100000010
    23    3 C 100000011
    24    2 A 100000011
    25    3 B 100000111
    26    4 F 100000101
    27    5 E 1000001000
    28    4 A 1000001001
    29    5 B 1000001011
    30    6 F 10000010100
    31    7 C 100000101000
+   34    4 C 100000101111   by C/0 * 3
    35    3 A 100000101111
    36    4 B 100000111111
    37    5 F 100000110111
    38    6 E 100000110011
    39    7 B 100000110001
    40    8 F 1000001100000
    41    9 C 10000011000000
+   47    3 C 10000011111111   by C/0 * 6
    48    2 A 10000011111111
    49    1 D 10000001111111
    50    0 E 10000001111111
    51   -1 A 10001001111111
    52    0 B 10011001111111
    53    1 F 10010001111111
    54    2 C 10010001111111
+   57   -1 C 10011111111111   by C/0 * 3
    58   -2 A 10011111111111
    59   -1 B 10111111111111
    60    0 F 10101111111111
    61    1 E 10100111111111
    62    2 B 10100011111111
    63    3 F 10100001111111
    64    4 E 10100000111111
    65    5 B 10100000011111
    66    6 F 10100000001111
    67    7 E 10100000000111
    68    8 B 10100000000011
    69    9 F 10100000000001
    70   10 E 101000000000000
    71    9 A 101000000000001
    72   10 B 101000000000011
    73   11 F 1010000000000100
    74   12 C 10100000000001000
+   77    9 C 10100000000001111  by C/0 * 3
    78    8 A 10100000000001111
    79    9 B 10100000000011111
    80   10 F 10100000000010111
    81   11 E 10100000000010011
    82   12 B 10100000000010001
    83   13 F 101000000000100000
    84   14 C 1010000000001000000
+   90    8 C 1010000000001111111  by C/0 * 6
    91    7 A 1010000000001111111
    92    8 B 1010000000011111111
    93    9 F 1010000000010111111
    94   10 E 1010000000010011111
    95   11 B 1010000000010001111
    96   12 F 1010000000010000111
    97   13 E 1010000000010000011
    98   14 B 1010000000010000001
    99   15 F 10100000000100000000
   100   16 C 101000000001000000000
+  109    7 C 101000000001111111111  by C/0 * 9
   110    6 A 101000000001111111111
   111    7 B 101000000011111111111
   112    8 F 101000000010111111111
   113    9 E 101000000010011111111
   114   10 B 101000000010001111111
   115   11 F 101000000010000111111
   116   12 E 101000000010000011111
   117   13 B 101000000010000001111
   118   14 F 101000000010000000111
   119   15 E 101000000010000000011
   120   16 B 101000000010000000001
   121   17 F 1010000000100000000000
   122   18 C 10100000001000000000000
+  134    6 C 10100000001111111111111  by C/0 * 12
   135    5 A 10100000001111111111111
   136    6 B 10100000011111111111111
   137    7 F 10100000010111111111111
   138    8 E 10100000010011111111111
   139    9 B 10100000010001111111111
   140   10 F 10100000010000111111111
   141   11 E 10100000010000011111111
   142   12 B 10100000010000001111111
   143   13 F 10100000010000000111111
   144   14 E 10100000010000000011111
   145   15 B 10100000010000000001111
   146   16 F 10100000010000000000111
   147   17 E 10100000010000000000011
   148   18 B 10100000010000000000001
   149   19 F 101000000100000000000000
   150   20 C 1010000001000000000000000
+  165    5 C 1010000001111111111111111  by C/0 * 15
   166    4 A 1010000001111111111111111
   167    5 B 1010000011111111111111111
   168    6 F 1010000010111111111111111
   169    7 E 1010000010011111111111111
   170    8 B 1010000010001111111111111
   171    9 F 1010000010000111111111111
   172   10 E 1010000010000011111111111
   173   11 B 1010000010000001111111111
   174   12 F 1010000010000000111111111
   175   13 E 1010000010000000011111111
   176   14 B 1010000010000000001111111
   177   15 F 1010000010000000000111111
   178   16 E 1010000010000000000011111
   179   17 B 1010000010000000000001111
   180   18 F 1010000010000000000000111
   181   19 E 1010000010000000000000011
   182   20 B 1010000010000000000000001
   183   21 F 10100000100000000000000000
   184   22 C 101000001000000000000000000
+  202    4 C 101000001111111111111111111  by C/0 * 18
   203    3 A 101000001111111111111111111
   204    4 B 101000011111111111111111111
   205    5 F 101000010111111111111111111
   206    6 E 101000010011111111111111111
   207    7 B 101000010001111111111111111
   208    8 F 101000010000111111111111111
   209    9 E 101000010000011111111111111
   210   10 B 101000010000001111111111111
   211   11 F 101000010000000111111111111
   212   12 E 101000010000000011111111111
   213   13 B 101000010000000001111111111
   214   14 F 101000010000000000111111111
   215   15 E 101000010000000000011111111
   216   16 B 101000010000000000001111111
   217   17 F 101000010000000000000111111
   218   18 E 101000010000000000000011111
   219   19 B 101000010000000000000001111
   220   20 F 101000010000000000000000111
   221   21 E 101000010000000000000000011
   222   22 B 101000010000000000000000001
   223   23 F 1010000100000000000000000000
   224   24 C 10100001000000000000000000000
+  245    3 C 10100001111111111111111111111  by C/0 * 21
   246    2 A 10100001111111111111111111111
   247    3 B 10100011111111111111111111111
   248    4 F 10100010111111111111111111111
   249    5 E 10100010011111111111111111111
   250    6 B 10100010001111111111111111111
   251    7 F 10100010000111111111111111111
   252    8 E 10100010000011111111111111111
   253    9 B 10100010000001111111111111111
   254   10 F 10100010000000111111111111111
   255   11 E 10100010000000011111111111111
   256   12 B 10100010000000001111111111111
   257   13 F 10100010000000000111111111111
   258   14 E 10100010000000000011111111111
   259   15 B 10100010000000000001111111111
   260   16 F 10100010000000000000111111111
   261   17 E 10100010000000000000011111111
   262   18 B 10100010000000000000001111111
   263   19 F 10100010000000000000000111111
   264   20 E 10100010000000000000000011111
   265   21 B 10100010000000000000000001111
   266   22 F 10100010000000000000000000111
   267   23 E 10100010000000000000000000011
   268   24 B 10100010000000000000000000001
   269   25 F 101000100000000000000000000000
   270   26 C 1010001000000000000000000000000
+  294    2 C 1010001111111111111111111111111  by C/0 * 24
   295    1 A 1010001111111111111111111111111
   296    2 B 1010011111111111111111111111111
   297    3 F 1010010111111111111111111111111
   298    4 E 1010010011111111111111111111111
   299    5 B 1010010001111111111111111111111
   300    6 F 1010010000111111111111111111111
   301    7 E 1010010000011111111111111111111
   302    8 B 1010010000001111111111111111111
   303    9 F 1010010000000111111111111111111
   304   10 E 1010010000000011111111111111111
   305   11 B 1010010000000001111111111111111
   306   12 F 1010010000000000111111111111111
   307   13 E 1010010000000000011111111111111
   308   14 B 1010010000000000001111111111111
   309   15 F 1010010000000000000111111111111
   310   16 E 1010010000000000000011111111111
   311   17 B 1010010000000000000001111111111

After 311 steps (201 lines): state = B.
Produced     13 ones.
Tape index 17, scanned [-4 .. 26].
State Count Execution count First in step
on 0 on 1 on 0 on 1
A 19 17 2 0 4
B 55 2 53 1 8
C 139 125 14 2 3
D 2 2   5  
E 43 4 39 6 17
F 53 12 41 9 16
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as 3-macro machine.
The same TM as 3-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:14:25 CEST 2010