4-Tuple BB7 #2 of Machado/Pereira

Comment: This TM produces 102 ones in 4955 steps.

State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
1 21 *= 1 stay 2 1 stay *
2 3> 2> 0 right 3 1 right 2
3 4> 20 0 right 4 0 stay 2
4 5> 5< 0 right 5 1 left 5
5 41 6< 1 stay 4 1 left 6
6 2> 7< 0 right 2 1 left 7
7 11 3> 1 stay 1 1 right 3
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps             BasSteps              BasTpos  Tape contents
    0                    0                    0  1>
    1                    2                    1  1 2>
    2                    3                    2  1 0 3>
    3                    4                    3  1 02 4>
    4                    5                    4  1 03 5>
    5                    7                    3  1 03 <5 1
    6                   13                    0  1 <5 14
    7                   14                   -1  <6 15
    8                   15                    0  2> 15
    9                   20                    5  15 2>
   10                   21                    6  15 0 3>
   11                   22                    7  15 02 4>
   12                   23                    8  15 03 5>
   13                   25                    7  15 03 <5 1
   14                   31                    4  15 <5 14
   15                   32                    3  14 <6 15
   16                   33                    2  13 <7 16
   17                   34                    3  13 3> 16
   18                   46                    9  13 06 3>
>> Try to prove a PA-CTR with 2 Vars...
    0                    0                    0  13+V(2) 01+V(1) 3>
    1                    1                    1  13+V(2) 02+V(1) 4>
    2                    2                    2  13+V(2) 03+V(1) 5>
    3                    4                    1  13+V(2) 03+V(1) <5 1
    4            10+2*V(1)           -2+-1*V(1)  13+V(2) <5 14+V(1)
    5            11+2*V(1)           -3+-1*V(1)  12+V(2) <6 15+V(1)
    6            12+2*V(1)           -4+-1*V(1)  11+V(2) <7 16+V(1)
    7            13+2*V(1)           -3+-1*V(1)  11+V(2) 3> 16+V(1)
    8            25+4*V(1)                    3  11+V(2) 06+V(1) 3>
<< Success! ==> defined new CTR 1 (PA)
   18                   46                    9  13 06 3>
== Executing  PA-CTR  1, V(1)=5, V(2)=0, repcount=1, factor=5/2
   26                   91                   12  1 011 3>
   27                   92                   13  1 012 4>
   28                   93                   14  1 013 5>
   29                   95                   13  1 013 <5 1
   30                  121                    0  1 <5 114
   31                  122                   -1  <6 115
   32                  123                    0  2> 115
   33                  138                   15  115 2>
   34                  139                   16  115 0 3>
>> Try to prove a PPA-CTR with 1 Vars...
    0                    0                    0  1 01+V(1) 3>
    1                    1                    1  1 02+V(1) 4>
    2                    2                    2  1 03+V(1) 5>
    3                    4                    1  1 03+V(1) <5 1
    4            10+2*V(1)           -2+-1*V(1)  1 <5 14+V(1)
    5            11+2*V(1)           -3+-1*V(1)  <6 15+V(1)
    6            12+2*V(1)           -2+-1*V(1)  2> 15+V(1)
    7            17+3*V(1)                    3  15+V(1) 2>
    8            18+3*V(1)                    4  15+V(1) 0 3>
<< Success! ==> defined new CTR 2 (PPA)
   34                  139                   16  115 0 3>
== Executing  PA-CTR  1, V(1)=0, V(2)=12, repcount=7, factor=5/2
   90                  734                   37  1 036 3>
== Executing PPA-CTR  2 (once), V(1)=35
   98                  857                   41  140 0 3>
== Executing  PA-CTR  1, V(1)=0, V(2)=37, repcount=19, factor=5/2
  250                 4752                   98  12 096 3>
  251                 4753                   99  12 097 4>
  252                 4754                  100  12 098 5>
  253                 4756                   99  12 098 <5 1
  254                 4952                    1  12 <5 199
  255                 4953                    0  1 <6 1100
  256                 4954                   -1  <7 1101
  257                 4955                   -1  1 <1 1101   [would halt]

Lines:       38
Top steps:   37
Macro steps: 257
Basic steps: 4955
Tape index:  -1
ones:        102
log10(ones    ):    2.009
log10(steps   ):    3.695
Run state:   would halt

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    T 4-Tuple BB7 #2 of Machado/Pereira
    4T 21 *=  3> 2>  4> 20  5> 5<  41 6<  2> 7<  11 3>
    : 102 4955
    gohalt 0
    L 2
    m 6000
    M	400
    pref	sim
    machv 4BB7_2  	just simple
    machv 4BB7_2-r	with repetitions reduced
    machv 4BB7_2-1	with tape symbol exponents
    machv 4BB7_2-m	as 1-macro machine
    machv 4BB7_2-a	as 1-macro machine with pure additive config-TRs
    iam	4BB7_2-a
    mtype	1
    mmtyp	3
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:11:26 CEST 2010
    edate	Tue Jul  6 22:11:27 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:26 CEST 2010
Ready: Tue Jul 6 22:11:27 CEST 2010