4-Tuple BB7 #2 of Machado/Pereira

Comment: This TM produces 102 ones in 4955 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
1 21 *= 1 stay 2 1 stay *
2 3> 2> 0 right 3 1 right 2
3 4> 20 0 right 4 0 stay 2
4 5> 5< 0 right 5 1 left 5
5 41 6< 1 stay 4 1 left 6
6 2> 7< 0 right 2 1 left 7
7 11 3> 1 stay 1 1 right 3
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <1
     1     0  1 <2
     2     1  1 2>
     3     2  1 0 3>
     4     3  1 0 0 4>
     5     4  1 03 5>
     6     4  1 03 4> 1
     7     3  1 03 <5 1
     8     3  1 0 0 1 <4 1
     9     2  1 0 0 <5 1 1
    10     2  1 0 1 <4 1 1
    11     1  1 0 <5 13
    12     1  1 1 <4 13
    13     0  1 <5 14
    14    -1  <6 15
    15     0  2> 15
+   20     5  15 2>
    21     6  15 0 3>
    22     7  15 0 0 4>
    23     8  15 03 5>
    24     8  15 03 4> 1
    25     7  15 03 <5 1
    26     7  15 0 0 1 <4 1
    27     6  15 0 0 <5 1 1
    28     6  15 0 1 <4 1 1
    29     5  15 0 <5 13
    30     5  16 <4 13
    31     4  15 <5 14
    32     3  14 <6 15
    33     2  13 <7 16
    34     3  13 3> 16
    35     3  13 2> 0 15
    36     4  13 0 3> 15
    37     4  13 0 2> 0 14
    38     5  13 0 0 3> 14
    39     5  13 0 0 2> 0 13
    40     6  13 03 3> 13
    41     6  13 03 2> 0 1 1
    42     7  13 04 3> 1 1
    43     7  13 04 2> 0 1
    44     8  13 05 3> 1
    45     8  13 05 2>
    46     9  13 06 3>
    47    10  13 07 4>
    48    11  13 08 5>
    49    11  13 08 4> 1
    50    10  13 08 <5 1
    51    10  13 07 1 <4 1
    52     9  13 07 <5 1 1
    53     9  13 06 1 <4 1 1
    54     8  13 06 <5 13
    55     8  13 05 1 <4 13
    56     7  13 05 <5 14
    57     7  13 04 1 <4 14
    58     6  13 04 <5 15
    59     6  13 03 1 <4 15
    60     5  13 03 <5 16
    61     5  13 0 0 1 <4 16
    62     4  13 0 0 <5 17
    63     4  13 0 1 <4 17
    64     3  13 0 <5 18
    65     3  14 <4 18
    66     2  13 <5 19
    67     1  1 1 <6 110
    68     0  1 <7 111
    69     1  1 3> 111
    70     1  1 2> 0 110
    71     2  1 0 3> 110
    72     2  1 0 2> 0 19
    73     3  1 0 0 3> 19
    74     3  1 0 0 2> 0 18
    75     4  1 03 3> 18
    76     4  1 03 2> 0 17
    77     5  1 04 3> 17
    78     5  1 04 2> 0 16
    79     6  1 05 3> 16
    80     6  1 05 2> 0 15
    81     7  1 06 3> 15
    82     7  1 06 2> 0 14
    83     8  1 07 3> 14
    84     8  1 07 2> 0 13
    85     9  1 08 3> 13
    86     9  1 08 2> 0 1 1
    87    10  1 09 3> 1 1
    88    10  1 09 2> 0 1
    89    11  1 010 3> 1
    90    11  1 010 2>
    91    12  1 011 3>
    92    13  1 012 4>
    93    14  1 013 5>
    94    14  1 013 4> 1
    95    13  1 013 <5 1
    96    13  1 012 1 <4 1
    97    12  1 012 <5 1 1
    98    12  1 011 1 <4 1 1
    99    11  1 011 <5 13
   100    11  1 010 1 <4 13
   101    10  1 010 <5 14
   102    10  1 09 1 <4 14
   103     9  1 09 <5 15
   104     9  1 08 1 <4 15
   105     8  1 08 <5 16
   106     8  1 07 1 <4 16
   107     7  1 07 <5 17
   108     7  1 06 1 <4 17
   109     6  1 06 <5 18
   110     6  1 05 1 <4 18
   111     5  1 05 <5 19
   112     5  1 04 1 <4 19
   113     4  1 04 <5 110
   114     4  1 03 1 <4 110
   115     3  1 03 <5 111
   116     3  1 0 0 1 <4 111
   117     2  1 0 0 <5 112
   118     2  1 0 1 <4 112
   119     1  1 0 <5 113
   120     1  1 1 <4 113
   121     0  1 <5 114
   122    -1  <6 115
   123     0  2> 115
+  138    15  115 2>
   139    16  115 0 3>
   140    17  115 0 0 4>
   141    18  115 03 5>
   142    18  115 03 4> 1
   143    17  115 03 <5 1
   144    17  115 0 0 1 <4 1
   145    16  115 0 0 <5 1 1
   146    16  115 0 1 <4 1 1
   147    15  115 0 <5 13
   148    15  116 <4 13
   149    14  115 <5 14
   150    13  114 <6 15
   151    12  113 <7 16
   152    13  113 3> 16
   153    13  113 2> 0 15
   154    14  113 0 3> 15
   155    14  113 0 2> 0 14
   156    15  113 0 0 3> 14
   157    15  113 0 0 2> 0 13
   158    16  113 03 3> 13
   159    16  113 03 2> 0 1 1
   160    17  113 04 3> 1 1
   161    17  113 04 2> 0 1
   162    18  113 05 3> 1
   163    18  113 05 2>
   164    19  113 06 3>
   165    20  113 07 4>
+  170    19  113 07 <5 1 1
+  175    17  113 04 1 <4 14
+  180    14  113 0 0 <5 17
+  185    11  112 <6 110
+  190    12  111 0 2> 0 19
+  195    15  111 04 3> 17
+  200    17  111 06 2> 0 14
+  205    20  111 09 3> 1 1
+  210    23  111 012 4>
+  215    22  111 012 <5 1 1
+  220    20  111 09 1 <4 14
+  225    17  111 07 <5 17
+  230    15  111 04 1 <4 19
+  235    12  111 0 0 <5 112
+  240     9  110 <6 115
+  245    10  19 0 2> 0 114
+  250    13  19 04 3> 112
+  300    15  19 07 <5 112
+  350    23  17 016 2> 0 14
+  400    11  17 04 1 <4 119
+  450    24  15 019 3> 17
+  500    16  15 012 <5 117
+  550    14  13 011 2> 0 119
+  600    32  13 029 1 <4 14
+  650     7  13 04 1 <4 129
+  700    20  1 019 3> 117
+  750    32  1 032 <5 17
+  800     7  1 07 <5 132
   801     7  1 06 1 <4 132
   802     6  1 06 <5 133
   803     6  1 05 1 <4 133
   804     5  1 05 <5 134
   805     5  1 04 1 <4 134
   806     4  1 04 <5 135
   807     4  1 03 1 <4 135
   808     3  1 03 <5 136
   809     3  1 0 0 1 <4 136
   810     2  1 0 0 <5 137
   811     2  1 0 1 <4 137
   812     1  1 0 <5 138
   813     1  1 1 <4 138
   814     0  1 <5 139
   815    -1  <6 140
   816     0  2> 140
+  916    41  136 05 2> 0 15
+ 1016    41  134 08 <5 111
+ 1116    37  132 05 1 <4 118
+ 1216    42  130 013 <5 116
+ 1316    58  128 030 1 <4 13
+ 1416    44  126 018 3> 118
+ 1516    33  126 08 <5 131
+ 1616    64  124 040 2>
+ 1716    25  122 03 3> 143
+ 1816    64  122 043 <5 16
+ 1916    25  120 05 2> 0 145
+ 2016    70  120 050 1 <4 13
+ 2116    20  121 <4 153
+ 2216    66  118 048 3> 18
+ 2316    35  118 018 <5 141
+ 2416    46  116 030 2> 0 130
+ 2516    61  116 045 1 <4 118
+ 2616    17  114 03 3> 163
+ 2716    67  114 053 3> 113
+ 2816    46  114 033 <5 136
+ 2916    27  112 015 2> 0 155
+ 3016    77  112 065 2> 0 15
+ 3116    42  112 030 1 <4 143
+ 3216    28  110 018 3> 158
+ 3316    78  110 068 3> 18
+ 3416    47  110 038 <5 141
+ 3516    18  18 010 2> 0 170
+ 3616    68  18 060 2> 0 120
+ 3716    63  18 055 1 <4 128
+ 3816    13  18 05 1 <4 178
+ 3916    49  16 043 3> 143
+ 4016    88  16 083 <5 16
+ 4116    38  16 033 <5 156
+ 4216    19  14 015 2> 0 175
+ 4316    69  14 065 2> 0 125
+ 4416    74  14 070 1 <4 123
+ 4516    24  14 020 1 <4 173
+ 4616    30  1 1 028 3> 168
+ 4716    80  1 1 078 3> 118
+ 4816    69  1 1 068 <5 131
+ 4916    19  1 1 018 <5 181
+ 4946     4  1 1 03 <5 196
  4947     4  1 1 0 0 1 <4 196
  4948     3  1 1 0 0 <5 197
  4949     3  1 1 0 1 <4 197
  4950     2  1 1 0 <5 198
  4951     2  13 <4 198
  4952     1  1 1 <5 199
  4953     0  1 <6 1100
  4954    -1  <7 1101
  4955    -1  1 <1 1101

After 4955 steps [4898 Msteps] (243 lines): state = 1.
Produced     102 ones.
Tape index -1, scanned [-1 .. 100].
State Count Execution count First in step
on 0 on 1 on 0 on 1
1 1 1   0  
2 1198 1137 61 2 1
3 1165 32 1133 3 34
4 1265 32 1233 4 6
5 1265 1233 32 5 13
6 32 3 29 14 32
7 29 1 28 4954 33
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:26 CEST 2010