4-Tuple BB7 #1 of Machado/Pereira

Comment: This TM produces 100 ones in 5093 steps.

State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
0 11 30 1 stay 1 0 stay 3
1 2R 1R 0 right 2 1 right 1
2 3R 10 0 right 3 0 stay 1
3 4L *= 0 left 4 1 stay *
4 5R 1L 0 right 5 1 left 1
5 6R 6L 0 right 6 1 left 6
6 51 0L 1 stay 5 1 left 0
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps             BasSteps              BasTpos  Tape contents
    0                    0                    0  0>
    1                    2                    1  1 1>
    2                    3                    2  1 0 2>
    3                    4                    3  1 02 3>
    4                    5                    2  1 02 <4
    5                    6                    3  1 02 5>
    6                    7                    4  1 03 6>
    7                    9                    3  1 03 <6 1
    8                   15                    0  1 <6 14
    9                   16                   -1  <0 15
   10                   18                    0  1 1> 15
   11                   23                    5  16 1>
   12                   24                    6  16 0 2>
   13                   25                    7  16 02 3>
   14                   26                    6  16 02 <4
   15                   27                    7  16 02 5>
   16                   28                    8  16 03 6>
   17                   30                    7  16 03 <6 1
   18                   36                    4  16 <6 14
   19                   37                    3  15 <0 15
   20                   39                    2  14 <4 0 15
   21                   40                    1  13 <1 1 0 15
   22                   41                    2  13 1> 1 0 15
   23                   42                    3  14 1> 0 15
   24                   43                    4  14 0 2> 15
   25                   53                    9  14 06 2>
>> Try to prove a PA-CTR with 2 Vars...
    0                    0                    0  14+V(2) 01+V(1) 2>
    1                    1                    1  14+V(2) 02+V(1) 3>
    2                    2                    0  14+V(2) 02+V(1) <4
    3                    3                    1  14+V(2) 02+V(1) 5>
    4                    4                    2  14+V(2) 03+V(1) 6>
    5                    6                    1  14+V(2) 03+V(1) <6 1
    6            12+2*V(1)           -2+-1*V(1)  14+V(2) <6 14+V(1)
    7            13+2*V(1)           -3+-1*V(1)  13+V(2) <0 15+V(1)
    8            15+2*V(1)           -4+-1*V(1)  12+V(2) <4 0 15+V(1)
    9            16+2*V(1)           -5+-1*V(1)  11+V(2) <1 1 0 15+V(1)
   10            17+2*V(1)           -4+-1*V(1)  11+V(2) 1> 1 0 15+V(1)
   11            18+2*V(1)           -3+-1*V(1)  12+V(2) 1> 0 15+V(1)
   12            19+2*V(1)           -2+-1*V(1)  12+V(2) 0 2> 15+V(1)
   13            29+4*V(1)                    3  12+V(2) 06+V(1) 2>
<< Success! ==> defined new CTR 1 (PA)
   25                   53                    9  14 06 2>
== Executing  PA-CTR  1, V(1)=5, V(2)=0, repcount=1, factor=5/2
   38                  102                   12  12 011 2>
   39                  103                   13  12 012 3>
   40                  104                   12  12 012 <4
   41                  105                   13  12 012 5>
   42                  106                   14  12 013 6>
   43                  108                   13  12 013 <6 1
   44                  134                    0  12 <6 114
   45                  135                   -1  1 <0 115
   46                  137                   -2  <4 0 115
   47                  138                   -1  5> 0 115
   48                  139                    0  6> 115
   49                  140                   -1  <0 115
   50                  142                    0  1 1> 115
   51                  157                   15  116 1>
   52                  158                   16  116 0 2>
>> Try to prove a PPA-CTR with 1 Vars...
    0                    0                    0  12 01+V(1) 2>
    1                    1                    1  12 02+V(1) 3>
    2                    2                    0  12 02+V(1) <4
    3                    3                    1  12 02+V(1) 5>
    4                    4                    2  12 03+V(1) 6>
    5                    6                    1  12 03+V(1) <6 1
    6            12+2*V(1)           -2+-1*V(1)  12 <6 14+V(1)
    7            13+2*V(1)           -3+-1*V(1)  1 <0 15+V(1)
    8            15+2*V(1)           -4+-1*V(1)  <4 0 15+V(1)
    9            16+2*V(1)           -3+-1*V(1)  5> 0 15+V(1)
   10            17+2*V(1)           -2+-1*V(1)  6> 15+V(1)
   11            18+2*V(1)           -3+-1*V(1)  <0 15+V(1)
   12            20+2*V(1)           -2+-1*V(1)  1 1> 15+V(1)
   13            25+3*V(1)                    3  16+V(1) 1>
   14            26+3*V(1)                    4  16+V(1) 0 2>
<< Success! ==> defined new CTR 2 (PPA)
   52                  158                   16  116 0 2>
== Executing  PA-CTR  1, V(1)=0, V(2)=12, repcount=7, factor=5/2
  143                  781                   37  12 036 2>
== Executing PPA-CTR  2 (once), V(1)=35
  157                  912                   41  141 0 2>
== Executing  PA-CTR  1, V(1)=0, V(2)=37, repcount=19, factor=5/2
  404                 4883                   98  13 096 2>
  405                 4884                   99  13 097 3>
  406                 4885                   98  13 097 <4
  407                 4886                   99  13 097 5>
  408                 4887                  100  13 098 6>
  409                 4889                   99  13 098 <6 1
  410                 5085                    1  13 <6 199
  411                 5086                    0  12 <0 1100
  412                 5088                   -1  1 <4 0 1100
  413                 5089                   -2  <1 1 0 1100
  414                 5090                   -1  2> 1 0 1100
  415                 5092                    0  2> 0 1100
  416                 5093                    1  3> 1100
  417                 5093                    1  3> 1100   [would halt]

Lines:       57
Top steps:   56
Macro steps: 417
Basic steps: 5093
Tape index:  1
ones:        100
log10(ones    ):    2.000
log10(steps   ):    3.707
Run state:   would halt

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    T 4-Tuple BB7 #1 of Machado/Pereira
    4t 11 30  2R 1R  3R 10  4L *=  5R 1L 6R 6L  51 0L : 100 5093
    gohalt 0
    L 2
    m 5094
    M	450
    pref	sim
    machv 4BB7_1  	just simple
    machv 4BB7_1-r	with repetitions reduced
    machv 4BB7_1-1	with tape symbol exponents
    machv 4BB7_1-m	as 1-macro machine
    machv 4BB7_1-a	as 1-macro machine with pure additive config-TRs
    iam	4BB7_1-a
    mtype	1
    mmtyp	3
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:11:25 CEST 2010
    edate	Tue Jul  6 22:11:25 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:25 CEST 2010
Ready: Tue Jul 6 22:11:25 CEST 2010