4-Tuple BB7 #1 of Machado/Pereira

Comment: This TM produces 100 ones in 5093 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on 0 on 1
Print Move Goto Print Move Goto
0 11 30 1 stay 1 0 stay 3
1 2R 1R 0 right 2 1 right 1
2 3R 10 0 right 3 0 stay 1
3 4L *= 0 left 4 1 stay *
4 5R 1L 0 right 5 1 left 1
5 6R 6L 0 right 6 1 left 6
6 51 0L 1 stay 5 1 left 0
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <0
     1     0  1 <1
     2     1  1 1>
     3     2  1 0 2>
     4     3  1 0 0 3>
     5     2  1 0 0 <4
     6     3  1 0 0 5>
     7     4  1 03 6>
     8     4  1 03 5> 1
     9     3  1 03 <6 1
    10     3  1 0 0 1 <5 1
    11     2  1 0 0 <6 1 1
    12     2  1 0 1 <5 1 1
    13     1  1 0 <6 13
    14     1  1 1 <5 13
    15     0  1 <6 14
    16    -1  <0 15
    17    -1  1 <1 15
    18     0  1 1> 15
+   23     5  16 1>
    24     6  16 0 2>
    25     7  16 0 0 3>
    26     6  16 0 0 <4
    27     7  16 0 0 5>
    28     8  16 03 6>
    29     8  16 03 5> 1
    30     7  16 03 <6 1
    31     7  16 0 0 1 <5 1
    32     6  16 0 0 <6 1 1
    33     6  16 0 1 <5 1 1
    34     5  16 0 <6 13
    35     5  17 <5 13
    36     4  16 <6 14
    37     3  15 <0 15
    38     3  14 0 <3 15
    39     2  14 <4 0 15
    40     1  13 <1 1 0 15
    41     2  13 1> 1 0 15
    42     3  14 1> 0 15
    43     4  14 0 2> 15
    44     4  14 0 1> 0 14
    45     5  14 0 0 2> 14
    46     5  14 0 0 1> 0 13
    47     6  14 03 2> 13
    48     6  14 03 1> 0 1 1
    49     7  14 04 2> 1 1
    50     7  14 04 1> 0 1
+   60    10  14 07 1 <5 1
+   70     5  14 0 0 1 <5 16
+   80     0  1 1> 1 0 110
+   90     6  1 1 05 2> 16
+  100    11  1 1 010 2> 1
+  110    12  1 1 012 <6 1 1
+  120     7  1 1 07 <6 17
+  130     2  1 1 0 0 <6 112
   131     2  1 1 0 1 <5 112
   132     1  1 1 0 <6 113
   133     1  13 <5 113
   134     0  1 1 <6 114
   135    -1  1 <0 115
   136    -1  <3 115
   137    -2  <4 0 115
   138    -1  5> 0 115
   139     0  6> 115
   140    -1  <0 115
   141    -1  1 <1 115
   142     0  1 1> 115
+  157    15  116 1>
   158    16  116 0 2>
   159    17  116 0 0 3>
   160    16  116 0 0 <4
   161    17  116 0 0 5>
   162    18  116 03 6>
   163    18  116 03 5> 1
   164    17  116 03 <6 1
   165    17  116 0 0 1 <5 1
   166    16  116 0 0 <6 1 1
   167    16  116 0 1 <5 1 1
   168    15  116 0 <6 13
   169    15  117 <5 13
   170    14  116 <6 14
+  850     7  1 1 06 1 <5 132
   851     6  1 1 06 <6 133
   852     6  1 1 05 1 <5 133
   853     5  1 1 05 <6 134
   854     5  1 1 04 1 <5 134
   855     4  1 1 04 <6 135
   856     4  1 1 03 1 <5 135
   857     3  1 1 03 <6 136
   858     3  1 1 0 0 1 <5 136
   859     2  1 1 0 0 <6 137
   860     2  1 1 0 1 <5 137
   861     1  1 1 0 <6 138
   862     1  13 <5 138
   863     0  1 1 <6 139
   864    -1  1 <0 140
   865    -1  <3 140
   866    -2  <4 0 140
   867    -1  5> 0 140
   868     0  6> 140
   869    -1  <0 140
   870    -1  1 <1 140
   871     0  1 1> 140
+  911    40  141 1>
   912    41  141 0 2>
   913    42  141 0 0 3>
   914    41  141 0 0 <4
   915    42  141 0 0 5>
   916    43  141 03 6>
   917    43  141 03 5> 1
   918    42  141 03 <6 1
   919    42  141 0 0 1 <5 1
   920    41  141 0 0 <6 1 1
   921    41  141 0 1 <5 1 1
   922    40  141 0 <6 13
   923    40  142 <5 13
   924    39  141 <6 14
   925    38  140 <0 15
   926    38  139 0 <3 15
   927    37  139 <4 0 15
   928    36  138 <1 1 0 15
   929    37  138 1> 1 0 15
   930    38  139 1> 0 15
   931    39  139 0 2> 15
   932    39  139 0 1> 0 14
   933    40  139 0 0 2> 14
   934    40  139 0 0 1> 0 13
   935    41  139 03 2> 13
   936    41  139 03 1> 0 1 1
   937    42  139 04 2> 1 1
   938    42  139 04 1> 0 1
   939    43  139 05 2> 1
   940    43  139 05 1>
   941    44  139 06 2>
   942    45  139 07 3>
   943    44  139 07 <4
   944    45  139 07 5>
   945    46  139 08 6>
   946    46  139 08 5> 1
   947    45  139 08 <6 1
   948    45  139 07 1 <5 1
   949    44  139 07 <6 1 1
   950    44  139 06 1 <5 1 1
+ 1000    46  137 011 <6 13
+ 1050    45  135 011 1> 0 14
+ 1100    34  136 <5 118
+ 1150    53  133 022 <4
+ 1200    31  133 <6 124
+ 1250    52  131 022 1> 0 13
+ 1300    39  131 09 1 <5 119
+ 1350    41  129 013 2> 118
+ 1400    56  129 029 <6 15
+ 1450    31  129 04 <6 130
+ 1500    44  127 018 1> 0 117
+ 1550    59  127 033 1 <5 15
+ 1600    34  127 08 1 <5 130
+ 1650    38  125 014 2> 127
+ 1700    63  125 039 2> 1 1
+ 1750    46  125 023 <6 121
+ 1800    20  122 <1 1 0 145
+ 1850    46  123 024 1> 0 121
+ 1900    69  123 047 1 <5 1
+ 1950    44  123 022 1 <5 126
+ 2000    19  120 1> 1 0 150
+ 2050    45  121 025 2> 126
+ 2100    70  121 050 2> 1
+ 2150    51  121 032 <6 122
+ 2200    26  121 07 <6 147
+ 2250    33  119 015 1> 0 140
+ 2300    58  119 040 1> 0 115
+ 2350    69  119 051 1 <5 17
+ 2400    44  119 026 1 <5 132
+ 2450    19  119 0 1 <5 157
+ 2500    37  117 021 2> 140
+ 2550    62  117 046 2> 115
+ 2600    71  117 056 <6 18
+ 2650    46  117 031 <6 133
+ 2700    21  117 06 <6 158
+ 2750    30  115 016 1> 0 149
+ 2800    55  115 041 1> 0 124
+ 2850    81  115 067 3>
+ 2900    59  115 045 1 <5 123
+ 2950    34  115 020 1 <5 148
+ 3000    14  113 0 0 2> 169
+ 3050    39  113 027 2> 144
+ 3100    64  113 052 2> 119
+ 3150    81  113 070 <6 14
+ 3200    56  113 045 <6 129
+ 3250    31  113 020 <6 154
+ 3300    12  111 0 0 1> 0 173
+ 3350    37  111 027 1> 0 148
+ 3400    62  111 052 1> 0 123
+ 3450    87  111 077 5>
+ 3500    64  111 054 1 <5 124
+ 3550    39  111 029 1 <5 149
+ 3600    14  111 04 1 <5 174
+ 3650    26  19 018 2> 163
+ 3700    51  19 043 2> 138
+ 3750    76  19 068 2> 113
+ 3800    81  19 074 <6 110
+ 3850    56  19 049 <6 135
+ 3900    31  19 024 <6 160
+ 3950     6  17 0 <3 185
+ 4000    29  17 023 1> 0 162
+ 4050    54  17 048 1> 0 137
+ 4100    79  17 073 1> 0 112
+ 4150    84  17 078 1 <5 110
+ 4200    59  17 053 1 <5 135
+ 4250    34  17 028 1 <5 160
+ 4300     9  17 03 1 <5 185
+ 4350    23  15 019 2> 172
+ 4400    48  15 044 2> 147
+ 4450    73  15 069 2> 122
+ 4500    96  15 093 <6 1
+ 4550    71  15 068 <6 126
+ 4600    46  15 043 <6 151
+ 4650    21  15 018 <6 176
+ 4700     6  13 04 1> 0 191
+ 4750    31  13 029 1> 0 166
+ 4800    56  13 054 1> 0 141
+ 4850    81  13 079 1> 0 116
+ 4900    94  13 092 1 <5 16
+ 4950    69  13 067 1 <5 131
+ 5000    44  13 042 1 <5 156
+ 5050    19  13 017 1 <5 181
+ 5076     6  13 04 1 <5 194
  5077     5  13 04 <6 195
  5078     5  13 03 1 <5 195
  5079     4  13 03 <6 196
  5080     4  13 0 0 1 <5 196
  5081     3  13 0 0 <6 197
  5082     3  13 0 1 <5 197
  5083     2  13 0 <6 198
  5084     2  14 <5 198
  5085     1  13 <6 199
  5086     0  1 1 <0 1100
  5087     0  1 0 <3 1100
  5088    -1  1 <4 0 1100
  5089    -2  <1 1 0 1100
  5090    -1  2> 1 0 1100
  5091    -1  1> 0 0 1100
  5092     0  2> 0 1100
  5093     1  3> 1100

After 5093 steps [5036 Msteps] (243 lines): state = 3.
Produced     100 ones.
Tape index 1, scanned [-2 .. 100].
State Count Execution count First in step
on 0 on 1 on 0 on 1
0 35 4 31 0 37
1 1259 1139 120 2 1
2 1139 33 1106 3 43
3 63 63   4  
4 63 34 29 5 39
5 1267 34 1233 6 8
6 1267 1233 34 7 15
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:25 CEST 2010