Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 3LA | 1LA | 1RA | 1 | right | B | 3 | left | A | 1 | left | A | 1 | right | A |
B | 2LA | 1RH | 3RA | 3RB | 2 | left | A | 1 | right | H | 3 | right | A | 3 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 -1 <A 3 2 4 0 1 B> 3 2 5 1 1 3 B> 2 6 2 1 3 3 A> 7 3 1 3 3 1 B> 8 2 1 3 3 1 <A 2 9 1 1 3 3 <A 3 2 10 2 1 3 1 A> 3 2 11 3 1 3 1 1 A> 2 12 2 1 3 1 1 <A 1 + 14 0 1 3 <A 3 3 1 15 1 1 1 A> 3 3 1 + 17 3 14 A> 1 18 2 14 <A 3 + 22 -2 <A 35 23 -1 1 B> 35 + 28 4 1 35 B> 29 3 1 35 <A 2 30 4 1 34 1 A> 2 31 3 1 34 1 <A 1 32 2 1 34 <A 3 1 33 3 1 33 1 A> 3 1 34 4 1 33 1 1 A> 1 35 3 1 33 1 1 <A 3 + 37 1 1 33 <A 33 38 2 1 3 3 1 A> 33 + 41 5 1 3 3 14 A> 42 6 1 3 3 15 B> 43 5 1 3 3 15 <A 2 + 48 0 1 3 3 <A 35 2 49 1 1 3 1 A> 35 2 + 54 6 1 3 16 A> 2 55 5 1 3 16 <A 1 + 61 -1 1 3 <A 36 1 62 0 1 1 A> 36 1 + 68 6 18 A> 1 69 5 18 <A 3 + 77 -3 <A 39 78 -2 1 B> 39 + 87 7 1 39 B> 88 6 1 39 <A 2 89 7 1 38 1 A> 2 90 6 1 38 1 <A 1 91 5 1 38 <A 3 1 92 6 1 37 1 A> 3 1 93 7 1 37 1 1 A> 1 94 6 1 37 1 1 <A 3 + 96 4 1 37 <A 33 97 5 1 36 1 A> 33 + 100 8 1 36 14 A> 101 9 1 36 15 B> 102 8 1 36 15 <A 2 + 107 3 1 36 <A 35 2 108 4 1 35 1 A> 35 2 + 113 9 1 35 16 A> 2 114 8 1 35 16 <A 1 + 120 2 1 35 <A 36 1 121 3 1 34 1 A> 36 1 + 127 9 1 34 17 A> 1 128 8 1 34 17 <A 3 + 135 1 1 34 <A 38 136 2 1 33 1 A> 38 + 144 10 1 33 19 A> 145 11 1 33 110 B> 146 10 1 33 110 <A 2 + 156 0 1 33 <A 310 2 157 1 1 3 3 1 A> 310 2 + 167 11 1 3 3 111 A> 2 168 10 1 3 3 111 <A 1 + 179 -1 1 3 3 <A 311 1 180 0 1 3 1 A> 311 1 + 191 11 1 3 112 A> 1 192 10 1 3 112 <A 3 + 204 -2 1 3 <A 313 205 -1 1 1 A> 313 + 218 12 115 A> 219 13 116 B> 220 12 116 <A 2 + 236 -4 <A 316 2 237 -3 1 B> 316 2 + 253 13 1 316 B> 2 254 14 1 317 A> 255 15 1 317 1 B> 256 14 1 317 1 <A 2 257 13 1 317 <A 3 2 258 14 1 316 1 A> 3 2 259 15 1 316 1 1 A> 2 260 14 1 316 1 1 <A 1 + 262 12 1 316 <A 3 3 1 263 13 1 315 1 A> 3 3 1 + 265 15 1 315 13 A> 1 266 14 1 315 13 <A 3 + 269 11 1 315 <A 34 270 12 1 314 1 A> 34 + 274 16 1 314 15 A> 275 17 1 314 16 B> 276 16 1 314 16 <A 2 + 282 10 1 314 <A 36 2 283 11 1 313 1 A> 36 2 + 289 17 1 313 17 A> 2 290 16 1 313 17 <A 1 + 297 9 1 313 <A 37 1 298 10 1 312 1 A> 37 1 + 305 17 1 312 18 A> 1 306 16 1 312 18 <A 3 + 314 8 1 312 <A 39 315 9 1 311 1 A> 39 + 324 18 1 311 110 A> 325 19 1 311 111 B> 326 18 1 311 111 <A 2 + 337 7 1 311 <A 311 2 338 8 1 310 1 A> 311 2 + 349 19 1 310 112 A> 2 350 18 1 310 112 <A 1 + 362 6 1 310 <A 312 1 363 7 1 39 1 A> 312 1 + 375 19 1 39 113 A> 1 376 18 1 39 113 <A 3 + 389 5 1 39 <A 314 390 6 1 38 1 A> 314 + 404 20 1 38 115 A> 405 21 1 38 116 B> 406 20 1 38 116 <A 2 + 422 4 1 38 <A 316 2 423 5 1 37 1 A> 316 2 + 439 21 1 37 117 A> 2 440 20 1 37 117 <A 1 + 457 3 1 37 <A 317 1 458 4 1 36 1 A> 317 1 + 475 21 1 36 118 A> 1 476 20 1 36 118 <A 3 + 494 2 1 36 <A 319 495 3 1 35 1 A> 319 + 514 22 1 35 120 A> 515 23 1 35 121 B> 516 22 1 35 121 <A 2 + 537 1 1 35 <A 321 2 538 2 1 34 1 A> 321 2 + 559 23 1 34 122 A> 2 560 22 1 34 122 <A 1 + 582 0 1 34 <A 322 1 583 1 1 33 1 A> 322 1 + 605 23 1 33 123 A> 1 606 22 1 33 123 <A 3 + 629 -1 1 33 <A 324 630 0 1 3 3 1 A> 324 + 654 24 1 3 3 125 A> 655 25 1 3 3 126 B> 656 24 1 3 3 126 <A 2 + 682 -2 1 3 3 <A 326 2 683 -1 1 3 1 A> 326 2 + 709 25 1 3 127 A> 2 710 24 1 3 127 <A 1 + 737 -3 1 3 <A 327 1 738 -2 1 1 A> 327 1 + 765 25 129 A> 1 766 24 129 <A 3 + 795 -5 <A 330 796 -4 1 B> 330 + 826 26 1 330 B> 827 25 1 330 <A 2 828 26 1 329 1 A> 2 829 25 1 329 1 <A 1 830 24 1 329 <A 3 1 831 25 1 328 1 A> 3 1 832 26 1 328 1 1 A> 1 833 25 1 328 1 1 <A 3 + 835 23 1 328 <A 33 836 24 1 327 1 A> 33 + 839 27 1 327 14 A> 840 28 1 327 15 B> 841 27 1 327 15 <A 2 + 846 22 1 327 <A 35 2 847 23 1 326 1 A> 35 2 + 852 28 1 326 16 A> 2 853 27 1 326 16 <A 1 + 859 21 1 326 <A 36 1 860 22 1 325 1 A> 36 1 + 866 28 1 325 17 A> 1 867 27 1 325 17 <A 3 + 874 20 1 325 <A 38 875 21 1 324 1 A> 38 + 883 29 1 324 19 A> 884 30 1 324 110 B> 885 29 1 324 110 <A 2 + 895 19 1 324 <A 310 2 896 20 1 323 1 A> 310 2 + 906 30 1 323 111 A> 2 907 29 1 323 111 <A 1 + 918 18 1 323 <A 311 1 919 19 1 322 1 A> 311 1 + 930 30 1 322 112 A> 1 931 29 1 322 112 <A 3 + 943 17 1 322 <A 313 944 18 1 321 1 A> 313 + 957 31 1 321 114 A> 958 32 1 321 115 B> 959 31 1 321 115 <A 2 After 959 steps (201 lines): state = A. Produced 38 nonzeros. Tape index 31, scanned [-5 .. 32].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 878 | 20 | 431 | 15 | 412 | 0 | 2 | 11 | 9 |
B | 81 | 18 | 2 | 61 | 1 | 5 | 4 |