Comment: This TM produces 90 nonzeros in 7195 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 3LA | 1LA | 1RA | 1 | right | B | 3 | left | A | 1 | left | A | 1 | right | A |
| B | 2LA | 1RH | 3RA | 3RB | 2 | left | A | 1 | right | H | 3 | right | A | 3 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 -1 <A 3 2
4 0 1 B> 3 2
5 1 1 3 B> 2
6 2 1 3 3 A>
7 3 1 3 3 1 B>
8 2 1 3 3 1 <A 2
9 1 1 3 3 <A 3 2
10 2 1 3 1 A> 3 2
11 3 1 3 1 1 A> 2
12 2 1 3 1 1 <A 1
+ 14 0 1 3 <A 3 3 1
15 1 1 1 A> 3 3 1
+ 17 3 14 A> 1
18 2 14 <A 3
+ 22 -2 <A 35
23 -1 1 B> 35
+ 28 4 1 35 B>
29 3 1 35 <A 2
30 4 1 34 1 A> 2
31 3 1 34 1 <A 1
32 2 1 34 <A 3 1
33 3 1 33 1 A> 3 1
34 4 1 33 1 1 A> 1
35 3 1 33 1 1 <A 3
+ 37 1 1 33 <A 33
38 2 1 3 3 1 A> 33
+ 41 5 1 3 3 14 A>
42 6 1 3 3 15 B>
43 5 1 3 3 15 <A 2
+ 48 0 1 3 3 <A 35 2
49 1 1 3 1 A> 35 2
+ 54 6 1 3 16 A> 2
55 5 1 3 16 <A 1
+ 61 -1 1 3 <A 36 1
62 0 1 1 A> 36 1
+ 68 6 18 A> 1
69 5 18 <A 3
+ 77 -3 <A 39
78 -2 1 B> 39
+ 87 7 1 39 B>
88 6 1 39 <A 2
89 7 1 38 1 A> 2
90 6 1 38 1 <A 1
91 5 1 38 <A 3 1
92 6 1 37 1 A> 3 1
93 7 1 37 1 1 A> 1
94 6 1 37 1 1 <A 3
+ 96 4 1 37 <A 33
97 5 1 36 1 A> 33
+ 100 8 1 36 14 A>
101 9 1 36 15 B>
102 8 1 36 15 <A 2
+ 107 3 1 36 <A 35 2
108 4 1 35 1 A> 35 2
+ 113 9 1 35 16 A> 2
114 8 1 35 16 <A 1
+ 120 2 1 35 <A 36 1
121 3 1 34 1 A> 36 1
+ 127 9 1 34 17 A> 1
128 8 1 34 17 <A 3
+ 135 1 1 34 <A 38
136 2 1 33 1 A> 38
+ 144 10 1 33 19 A>
145 11 1 33 110 B>
146 10 1 33 110 <A 2
+ 156 0 1 33 <A 310 2
157 1 1 3 3 1 A> 310 2
+ 167 11 1 3 3 111 A> 2
168 10 1 3 3 111 <A 1
+ 179 -1 1 3 3 <A 311 1
180 0 1 3 1 A> 311 1
+ 191 11 1 3 112 A> 1
192 10 1 3 112 <A 3
+ 204 -2 1 3 <A 313
205 -1 1 1 A> 313
+ 218 12 115 A>
219 13 116 B>
220 12 116 <A 2
+ 236 -4 <A 316 2
237 -3 1 B> 316 2
+ 253 13 1 316 B> 2
254 14 1 317 A>
255 15 1 317 1 B>
256 14 1 317 1 <A 2
257 13 1 317 <A 3 2
258 14 1 316 1 A> 3 2
259 15 1 316 1 1 A> 2
260 14 1 316 1 1 <A 1
+ 262 12 1 316 <A 3 3 1
263 13 1 315 1 A> 3 3 1
+ 265 15 1 315 13 A> 1
266 14 1 315 13 <A 3
+ 269 11 1 315 <A 34
270 12 1 314 1 A> 34
+ 274 16 1 314 15 A>
275 17 1 314 16 B>
276 16 1 314 16 <A 2
+ 282 10 1 314 <A 36 2
283 11 1 313 1 A> 36 2
+ 289 17 1 313 17 A> 2
290 16 1 313 17 <A 1
+ 297 9 1 313 <A 37 1
298 10 1 312 1 A> 37 1
+ 305 17 1 312 18 A> 1
306 16 1 312 18 <A 3
+ 314 8 1 312 <A 39
315 9 1 311 1 A> 39
+ 324 18 1 311 110 A>
325 19 1 311 111 B>
326 18 1 311 111 <A 2
+ 337 7 1 311 <A 311 2
338 8 1 310 1 A> 311 2
+ 349 19 1 310 112 A> 2
350 18 1 310 112 <A 1
+ 362 6 1 310 <A 312 1
363 7 1 39 1 A> 312 1
+ 375 19 1 39 113 A> 1
376 18 1 39 113 <A 3
+ 389 5 1 39 <A 314
390 6 1 38 1 A> 314
+ 404 20 1 38 115 A>
405 21 1 38 116 B>
406 20 1 38 116 <A 2
+ 422 4 1 38 <A 316 2
423 5 1 37 1 A> 316 2
+ 439 21 1 37 117 A> 2
440 20 1 37 117 <A 1
+ 457 3 1 37 <A 317 1
458 4 1 36 1 A> 317 1
+ 475 21 1 36 118 A> 1
476 20 1 36 118 <A 3
+ 494 2 1 36 <A 319
495 3 1 35 1 A> 319
+ 514 22 1 35 120 A>
515 23 1 35 121 B>
516 22 1 35 121 <A 2
+ 537 1 1 35 <A 321 2
538 2 1 34 1 A> 321 2
+ 559 23 1 34 122 A> 2
560 22 1 34 122 <A 1
+ 582 0 1 34 <A 322 1
583 1 1 33 1 A> 322 1
+ 605 23 1 33 123 A> 1
606 22 1 33 123 <A 3
+ 629 -1 1 33 <A 324
630 0 1 3 3 1 A> 324
+ 654 24 1 3 3 125 A>
655 25 1 3 3 126 B>
656 24 1 3 3 126 <A 2
+ 682 -2 1 3 3 <A 326 2
683 -1 1 3 1 A> 326 2
+ 709 25 1 3 127 A> 2
710 24 1 3 127 <A 1
+ 737 -3 1 3 <A 327 1
738 -2 1 1 A> 327 1
+ 765 25 129 A> 1
766 24 129 <A 3
+ 795 -5 <A 330
796 -4 1 B> 330
+ 826 26 1 330 B>
827 25 1 330 <A 2
828 26 1 329 1 A> 2
829 25 1 329 1 <A 1
830 24 1 329 <A 3 1
831 25 1 328 1 A> 3 1
832 26 1 328 1 1 A> 1
833 25 1 328 1 1 <A 3
+ 835 23 1 328 <A 33
836 24 1 327 1 A> 33
+ 839 27 1 327 14 A>
840 28 1 327 15 B>
841 27 1 327 15 <A 2
+ 846 22 1 327 <A 35 2
847 23 1 326 1 A> 35 2
+ 852 28 1 326 16 A> 2
853 27 1 326 16 <A 1
+ 859 21 1 326 <A 36 1
860 22 1 325 1 A> 36 1
+ 866 28 1 325 17 A> 1
867 27 1 325 17 <A 3
+ 874 20 1 325 <A 38
875 21 1 324 1 A> 38
+ 883 29 1 324 19 A>
884 30 1 324 110 B>
885 29 1 324 110 <A 2
+ 895 19 1 324 <A 310 2
896 20 1 323 1 A> 310 2
+ 906 30 1 323 111 A> 2
907 29 1 323 111 <A 1
+ 918 18 1 323 <A 311 1
919 19 1 322 1 A> 311 1
+ 930 30 1 322 112 A> 1
931 29 1 322 112 <A 3
+ 943 17 1 322 <A 313
944 18 1 321 1 A> 313
+ 957 31 1 321 114 A>
958 32 1 321 115 B>
959 31 1 321 115 <A 2
After 959 steps (201 lines): state = A.
Produced 38 nonzeros.
Tape index 31, scanned [-5 .. 32].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 878 | 20 | 431 | 15 | 412 | 0 | 2 | 11 | 9 |
| B | 81 | 18 | 2 | 61 | 1 | 5 | 4 | ||