Comment: This TM produces >4.210x10^6034 nonzeros in >5.318x10^12068 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 0LB | 1RD | 1 | right | B | 0 | left | B | 1 | right | D |
B | 2RC | 2LA | 0LA | 2 | right | C | 2 | left | A | 0 | left | A |
C | 1LB | 0LA | 0LA | 1 | left | B | 0 | left | A | 0 | left | A |
D | 1RA | 0RA | 1RH | 1 | right | A | 0 | right | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 2 1 2 C> 3 1 1 2 <B 1 4 0 1 <A 0 1 5 -1 <B 0 0 1 6 0 2 C> 0 0 1 7 -1 2 <B 1 0 1 8 -2 <A 0 1 0 1 9 -1 1 B> 0 1 0 1 10 0 1 2 C> 1 0 1 11 -1 1 2 <A 0 0 1 12 0 1 1 D> 0 0 1 13 1 13 A> 0 1 14 2 14 B> 1 15 1 14 <A 2 16 0 13 <B 0 2 17 -1 1 1 <A 2 0 2 18 -2 1 <B 0 2 0 2 19 -3 <A 2 0 2 0 2 20 -2 1 B> 2 0 2 0 2 21 -3 1 <A 0 0 2 0 2 22 -4 <B 03 2 0 2 23 -3 2 C> 03 2 0 2 24 -4 2 <B 1 0 0 2 0 2 25 -5 <A 0 1 0 0 2 0 2 26 -4 1 B> 0 1 0 0 2 0 2 27 -3 1 2 C> 1 0 0 2 0 2 28 -4 1 2 <A 03 2 0 2 29 -3 1 1 D> 03 2 0 2 30 -2 13 A> 0 0 2 0 2 31 -1 14 B> 0 2 0 2 32 0 14 2 C> 2 0 2 33 -1 14 2 <A 0 0 2 34 0 15 D> 0 0 2 35 1 16 A> 0 2 36 2 17 B> 2 37 1 17 <A 38 0 16 <B 39 -1 15 <A 2 40 -2 14 <B 0 2 41 -3 13 <A 2 0 2 42 -4 1 1 <B 0 2 0 2 43 -5 1 <A 2 0 2 0 2 44 -6 <B 0 2 0 2 0 2 45 -5 2 C> 0 2 0 2 0 2 46 -6 2 <B 1 2 0 2 0 2 47 -7 <A 0 1 2 0 2 0 2 48 -6 1 B> 0 1 2 0 2 0 2 49 -5 1 2 C> 1 2 0 2 0 2 50 -6 1 2 <A 0 2 0 2 0 2 51 -5 1 1 D> 0 2 0 2 0 2 52 -4 13 A> 2 0 2 0 2 53 -3 14 D> 0 2 0 2 54 -2 15 A> 2 0 2 55 -1 16 D> 0 2 56 0 17 A> 2 57 1 18 D> 58 2 19 A> 59 3 110 B> 60 4 110 2 C> 61 3 110 2 <B 1 62 2 110 <A 0 1 63 1 19 <B 0 0 1 64 0 18 <A 2 0 0 1 65 -1 17 <B 0 2 0 0 1 66 -2 16 <A 2 0 2 0 0 1 67 -3 15 <B 0 2 0 2 0 0 1 68 -4 14 <A 2 0 2 0 2 0 0 1 69 -5 13 <B 0 2 0 2 0 2 0 0 1 70 -6 1 1 <A 2 0 2 0 2 0 2 0 0 1 71 -7 1 <B 0 2 0 2 0 2 0 2 0 0 1 72 -8 <A 2 0 2 0 2 0 2 0 2 0 0 1 73 -7 1 B> 2 0 2 0 2 0 2 0 2 0 0 1 74 -8 1 <A 0 0 2 0 2 0 2 0 2 0 0 1 75 -9 <B 03 2 0 2 0 2 0 2 0 0 1 76 -8 2 C> 03 2 0 2 0 2 0 2 0 0 1 77 -9 2 <B 1 0 0 2 0 2 0 2 0 2 0 0 1 78 -10 <A 0 1 0 0 2 0 2 0 2 0 2 0 0 1 79 -9 1 B> 0 1 0 0 2 0 2 0 2 0 2 0 0 1 80 -8 1 2 C> 1 0 0 2 0 2 0 2 0 2 0 0 1 81 -9 1 2 <A 03 2 0 2 0 2 0 2 0 0 1 82 -8 1 1 D> 03 2 0 2 0 2 0 2 0 0 1 83 -7 13 A> 0 0 2 0 2 0 2 0 2 0 0 1 84 -6 14 B> 0 2 0 2 0 2 0 2 0 0 1 85 -5 14 2 C> 2 0 2 0 2 0 2 0 0 1 86 -6 14 2 <A 0 0 2 0 2 0 2 0 0 1 87 -5 15 D> 0 0 2 0 2 0 2 0 0 1 88 -4 16 A> 0 2 0 2 0 2 0 0 1 89 -3 17 B> 2 0 2 0 2 0 0 1 90 -4 17 <A 0 0 2 0 2 0 0 1 91 -5 16 <B 03 2 0 2 0 0 1 92 -6 15 <A 2 03 2 0 2 0 0 1 93 -7 14 <B 0 2 03 2 0 2 0 0 1 94 -8 13 <A 2 0 2 03 2 0 2 0 0 1 95 -9 1 1 <B 0 2 0 2 03 2 0 2 0 0 1 96 -10 1 <A 2 0 2 0 2 03 2 0 2 0 0 1 97 -11 <B 0 2 0 2 0 2 03 2 0 2 0 0 1 98 -10 2 C> 0 2 0 2 0 2 03 2 0 2 0 0 1 99 -11 2 <B 1 2 0 2 0 2 03 2 0 2 0 0 1 100 -12 <A 0 1 2 0 2 0 2 03 2 0 2 0 0 1 101 -11 1 B> 0 1 2 0 2 0 2 03 2 0 2 0 0 1 102 -10 1 2 C> 1 2 0 2 0 2 03 2 0 2 0 0 1 103 -11 1 2 <A 0 2 0 2 0 2 03 2 0 2 0 0 1 104 -10 1 1 D> 0 2 0 2 0 2 03 2 0 2 0 0 1 105 -9 13 A> 2 0 2 0 2 03 2 0 2 0 0 1 106 -8 14 D> 0 2 0 2 03 2 0 2 0 0 1 107 -7 15 A> 2 0 2 03 2 0 2 0 0 1 108 -6 16 D> 0 2 03 2 0 2 0 0 1 109 -5 17 A> 2 03 2 0 2 0 0 1 110 -4 18 D> 03 2 0 2 0 0 1 111 -3 19 A> 0 0 2 0 2 0 0 1 112 -2 110 B> 0 2 0 2 0 0 1 113 -1 110 2 C> 2 0 2 0 0 1 114 -2 110 2 <A 0 0 2 0 0 1 115 -1 111 D> 0 0 2 0 0 1 116 0 112 A> 0 2 0 0 1 117 1 113 B> 2 0 0 1 118 0 113 <A 03 1 119 -1 112 <B 04 1 120 -2 111 <A 2 04 1 121 -3 110 <B 0 2 04 1 122 -4 19 <A 2 0 2 04 1 123 -5 18 <B 0 2 0 2 04 1 124 -6 17 <A 2 0 2 0 2 04 1 125 -7 16 <B 0 2 0 2 0 2 04 1 126 -8 15 <A 2 0 2 0 2 0 2 04 1 127 -9 14 <B 0 2 0 2 0 2 0 2 04 1 128 -10 13 <A 2 0 2 0 2 0 2 0 2 04 1 129 -11 1 1 <B 0 2 0 2 0 2 0 2 0 2 04 1 130 -12 1 <A 2 0 2 0 2 0 2 0 2 0 2 04 1 131 -13 <B 0 2 0 2 0 2 0 2 0 2 0 2 04 1 132 -12 2 C> 0 2 0 2 0 2 0 2 0 2 0 2 04 1 133 -13 2 <B 1 2 0 2 0 2 0 2 0 2 0 2 04 1 134 -14 <A 0 1 2 0 2 0 2 0 2 0 2 0 2 04 1 135 -13 1 B> 0 1 2 0 2 0 2 0 2 0 2 0 2 04 1 136 -12 1 2 C> 1 2 0 2 0 2 0 2 0 2 0 2 04 1 137 -13 1 2 <A 0 2 0 2 0 2 0 2 0 2 0 2 04 1 138 -12 1 1 D> 0 2 0 2 0 2 0 2 0 2 0 2 04 1 139 -11 13 A> 2 0 2 0 2 0 2 0 2 0 2 04 1 140 -10 14 D> 0 2 0 2 0 2 0 2 0 2 04 1 141 -9 15 A> 2 0 2 0 2 0 2 0 2 04 1 142 -8 16 D> 0 2 0 2 0 2 0 2 04 1 143 -7 17 A> 2 0 2 0 2 0 2 04 1 144 -6 18 D> 0 2 0 2 0 2 04 1 145 -5 19 A> 2 0 2 0 2 04 1 146 -4 110 D> 0 2 0 2 04 1 147 -3 111 A> 2 0 2 04 1 148 -2 112 D> 0 2 04 1 149 -1 113 A> 2 04 1 150 0 114 D> 04 1 151 1 115 A> 03 1 152 2 116 B> 0 0 1 153 3 116 2 C> 0 1 154 2 116 2 <B 1 1 155 1 116 <A 0 1 1 156 0 115 <B 0 0 1 1 157 -1 114 <A 2 0 0 1 1 158 -2 113 <B 0 2 0 0 1 1 159 -3 112 <A 2 0 2 0 0 1 1 160 -4 111 <B 0 2 0 2 0 0 1 1 161 -5 110 <A 2 0 2 0 2 0 0 1 1 162 -6 19 <B 0 2 0 2 0 2 0 0 1 1 163 -7 18 <A 2 0 2 0 2 0 2 0 0 1 1 164 -8 17 <B 0 2 0 2 0 2 0 2 0 0 1 1 165 -9 16 <A 2 0 2 0 2 0 2 0 2 0 0 1 1 166 -10 15 <B 0 2 0 2 0 2 0 2 0 2 0 0 1 1 167 -11 14 <A 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 168 -12 13 <B 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 169 -13 1 1 <A 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 170 -14 1 <B 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 171 -15 <A 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 172 -14 1 B> 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 173 -15 1 <A 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 174 -16 <B 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 175 -15 2 C> 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 176 -16 2 <B 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 177 -17 <A 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 178 -16 1 B> 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 179 -15 1 2 C> 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 180 -16 1 2 <A 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 181 -15 1 1 D> 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 182 -14 13 A> 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 183 -13 14 B> 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 184 -12 14 2 C> 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 185 -13 14 2 <A 0 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 186 -12 15 D> 0 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 187 -11 16 A> 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 188 -10 17 B> 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 189 -11 17 <A 0 0 2 0 2 0 2 0 2 0 2 0 0 1 1 190 -12 16 <B 03 2 0 2 0 2 0 2 0 2 0 0 1 1 191 -13 15 <A 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 192 -14 14 <B 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 193 -15 13 <A 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 194 -16 1 1 <B 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 195 -17 1 <A 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 196 -18 <B 0 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 197 -17 2 C> 0 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 198 -18 2 <B 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 199 -19 <A 0 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 200 -18 1 B> 0 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1 After 200 steps (201 lines): state = B. Produced 12 nonzeros. Tape index -18, scanned [-19 .. 4].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 84 | 23 | 38 | 23 | 0 | 4 | 11 |
B | 71 | 22 | 31 | 18 | 1 | 14 | 3 |
C | 22 | 11 | 7 | 4 | 2 | 10 | 32 |
D | 23 | 23 | 12 |