Comment: This TM produces >4.210x10^6034 nonzeros in >5.318x10^12068 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 0LB | 1RD | 1 | right | B | 0 | left | B | 1 | right | D |
| B | 2RC | 2LA | 0LA | 2 | right | C | 2 | left | A | 0 | left | A |
| C | 1LB | 0LA | 0LA | 1 | left | B | 0 | left | A | 0 | left | A |
| D | 1RA | 0RA | 1RH | 1 | right | A | 0 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 2 1 2 C>
3 1 1 2 <B 1
4 0 1 <A 0 1
5 -1 <B 0 0 1
6 0 2 C> 0 0 1
7 -1 2 <B 1 0 1
8 -2 <A 0 1 0 1
9 -1 1 B> 0 1 0 1
10 0 1 2 C> 1 0 1
11 -1 1 2 <A 0 0 1
12 0 1 1 D> 0 0 1
13 1 13 A> 0 1
14 2 14 B> 1
15 1 14 <A 2
16 0 13 <B 0 2
17 -1 1 1 <A 2 0 2
18 -2 1 <B 0 2 0 2
19 -3 <A 2 0 2 0 2
20 -2 1 B> 2 0 2 0 2
21 -3 1 <A 0 0 2 0 2
22 -4 <B 03 2 0 2
23 -3 2 C> 03 2 0 2
24 -4 2 <B 1 0 0 2 0 2
25 -5 <A 0 1 0 0 2 0 2
26 -4 1 B> 0 1 0 0 2 0 2
27 -3 1 2 C> 1 0 0 2 0 2
28 -4 1 2 <A 03 2 0 2
29 -3 1 1 D> 03 2 0 2
30 -2 13 A> 0 0 2 0 2
31 -1 14 B> 0 2 0 2
32 0 14 2 C> 2 0 2
33 -1 14 2 <A 0 0 2
34 0 15 D> 0 0 2
35 1 16 A> 0 2
36 2 17 B> 2
37 1 17 <A
38 0 16 <B
39 -1 15 <A 2
40 -2 14 <B 0 2
41 -3 13 <A 2 0 2
42 -4 1 1 <B 0 2 0 2
43 -5 1 <A 2 0 2 0 2
44 -6 <B 0 2 0 2 0 2
45 -5 2 C> 0 2 0 2 0 2
46 -6 2 <B 1 2 0 2 0 2
47 -7 <A 0 1 2 0 2 0 2
48 -6 1 B> 0 1 2 0 2 0 2
49 -5 1 2 C> 1 2 0 2 0 2
50 -6 1 2 <A 0 2 0 2 0 2
51 -5 1 1 D> 0 2 0 2 0 2
52 -4 13 A> 2 0 2 0 2
53 -3 14 D> 0 2 0 2
54 -2 15 A> 2 0 2
55 -1 16 D> 0 2
56 0 17 A> 2
57 1 18 D>
58 2 19 A>
59 3 110 B>
60 4 110 2 C>
61 3 110 2 <B 1
62 2 110 <A 0 1
63 1 19 <B 0 0 1
64 0 18 <A 2 0 0 1
65 -1 17 <B 0 2 0 0 1
66 -2 16 <A 2 0 2 0 0 1
67 -3 15 <B 0 2 0 2 0 0 1
68 -4 14 <A 2 0 2 0 2 0 0 1
69 -5 13 <B 0 2 0 2 0 2 0 0 1
70 -6 1 1 <A 2 0 2 0 2 0 2 0 0 1
71 -7 1 <B 0 2 0 2 0 2 0 2 0 0 1
72 -8 <A 2 0 2 0 2 0 2 0 2 0 0 1
73 -7 1 B> 2 0 2 0 2 0 2 0 2 0 0 1
74 -8 1 <A 0 0 2 0 2 0 2 0 2 0 0 1
75 -9 <B 03 2 0 2 0 2 0 2 0 0 1
76 -8 2 C> 03 2 0 2 0 2 0 2 0 0 1
77 -9 2 <B 1 0 0 2 0 2 0 2 0 2 0 0 1
78 -10 <A 0 1 0 0 2 0 2 0 2 0 2 0 0 1
79 -9 1 B> 0 1 0 0 2 0 2 0 2 0 2 0 0 1
80 -8 1 2 C> 1 0 0 2 0 2 0 2 0 2 0 0 1
81 -9 1 2 <A 03 2 0 2 0 2 0 2 0 0 1
82 -8 1 1 D> 03 2 0 2 0 2 0 2 0 0 1
83 -7 13 A> 0 0 2 0 2 0 2 0 2 0 0 1
84 -6 14 B> 0 2 0 2 0 2 0 2 0 0 1
85 -5 14 2 C> 2 0 2 0 2 0 2 0 0 1
86 -6 14 2 <A 0 0 2 0 2 0 2 0 0 1
87 -5 15 D> 0 0 2 0 2 0 2 0 0 1
88 -4 16 A> 0 2 0 2 0 2 0 0 1
89 -3 17 B> 2 0 2 0 2 0 0 1
90 -4 17 <A 0 0 2 0 2 0 0 1
91 -5 16 <B 03 2 0 2 0 0 1
92 -6 15 <A 2 03 2 0 2 0 0 1
93 -7 14 <B 0 2 03 2 0 2 0 0 1
94 -8 13 <A 2 0 2 03 2 0 2 0 0 1
95 -9 1 1 <B 0 2 0 2 03 2 0 2 0 0 1
96 -10 1 <A 2 0 2 0 2 03 2 0 2 0 0 1
97 -11 <B 0 2 0 2 0 2 03 2 0 2 0 0 1
98 -10 2 C> 0 2 0 2 0 2 03 2 0 2 0 0 1
99 -11 2 <B 1 2 0 2 0 2 03 2 0 2 0 0 1
100 -12 <A 0 1 2 0 2 0 2 03 2 0 2 0 0 1
101 -11 1 B> 0 1 2 0 2 0 2 03 2 0 2 0 0 1
102 -10 1 2 C> 1 2 0 2 0 2 03 2 0 2 0 0 1
103 -11 1 2 <A 0 2 0 2 0 2 03 2 0 2 0 0 1
104 -10 1 1 D> 0 2 0 2 0 2 03 2 0 2 0 0 1
105 -9 13 A> 2 0 2 0 2 03 2 0 2 0 0 1
106 -8 14 D> 0 2 0 2 03 2 0 2 0 0 1
107 -7 15 A> 2 0 2 03 2 0 2 0 0 1
108 -6 16 D> 0 2 03 2 0 2 0 0 1
109 -5 17 A> 2 03 2 0 2 0 0 1
110 -4 18 D> 03 2 0 2 0 0 1
111 -3 19 A> 0 0 2 0 2 0 0 1
112 -2 110 B> 0 2 0 2 0 0 1
113 -1 110 2 C> 2 0 2 0 0 1
114 -2 110 2 <A 0 0 2 0 0 1
115 -1 111 D> 0 0 2 0 0 1
116 0 112 A> 0 2 0 0 1
117 1 113 B> 2 0 0 1
118 0 113 <A 03 1
119 -1 112 <B 04 1
120 -2 111 <A 2 04 1
121 -3 110 <B 0 2 04 1
122 -4 19 <A 2 0 2 04 1
123 -5 18 <B 0 2 0 2 04 1
124 -6 17 <A 2 0 2 0 2 04 1
125 -7 16 <B 0 2 0 2 0 2 04 1
126 -8 15 <A 2 0 2 0 2 0 2 04 1
127 -9 14 <B 0 2 0 2 0 2 0 2 04 1
128 -10 13 <A 2 0 2 0 2 0 2 0 2 04 1
129 -11 1 1 <B 0 2 0 2 0 2 0 2 0 2 04 1
130 -12 1 <A 2 0 2 0 2 0 2 0 2 0 2 04 1
131 -13 <B 0 2 0 2 0 2 0 2 0 2 0 2 04 1
132 -12 2 C> 0 2 0 2 0 2 0 2 0 2 0 2 04 1
133 -13 2 <B 1 2 0 2 0 2 0 2 0 2 0 2 04 1
134 -14 <A 0 1 2 0 2 0 2 0 2 0 2 0 2 04 1
135 -13 1 B> 0 1 2 0 2 0 2 0 2 0 2 0 2 04 1
136 -12 1 2 C> 1 2 0 2 0 2 0 2 0 2 0 2 04 1
137 -13 1 2 <A 0 2 0 2 0 2 0 2 0 2 0 2 04 1
138 -12 1 1 D> 0 2 0 2 0 2 0 2 0 2 0 2 04 1
139 -11 13 A> 2 0 2 0 2 0 2 0 2 0 2 04 1
140 -10 14 D> 0 2 0 2 0 2 0 2 0 2 04 1
141 -9 15 A> 2 0 2 0 2 0 2 0 2 04 1
142 -8 16 D> 0 2 0 2 0 2 0 2 04 1
143 -7 17 A> 2 0 2 0 2 0 2 04 1
144 -6 18 D> 0 2 0 2 0 2 04 1
145 -5 19 A> 2 0 2 0 2 04 1
146 -4 110 D> 0 2 0 2 04 1
147 -3 111 A> 2 0 2 04 1
148 -2 112 D> 0 2 04 1
149 -1 113 A> 2 04 1
150 0 114 D> 04 1
151 1 115 A> 03 1
152 2 116 B> 0 0 1
153 3 116 2 C> 0 1
154 2 116 2 <B 1 1
155 1 116 <A 0 1 1
156 0 115 <B 0 0 1 1
157 -1 114 <A 2 0 0 1 1
158 -2 113 <B 0 2 0 0 1 1
159 -3 112 <A 2 0 2 0 0 1 1
160 -4 111 <B 0 2 0 2 0 0 1 1
161 -5 110 <A 2 0 2 0 2 0 0 1 1
162 -6 19 <B 0 2 0 2 0 2 0 0 1 1
163 -7 18 <A 2 0 2 0 2 0 2 0 0 1 1
164 -8 17 <B 0 2 0 2 0 2 0 2 0 0 1 1
165 -9 16 <A 2 0 2 0 2 0 2 0 2 0 0 1 1
166 -10 15 <B 0 2 0 2 0 2 0 2 0 2 0 0 1 1
167 -11 14 <A 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
168 -12 13 <B 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
169 -13 1 1 <A 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
170 -14 1 <B 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
171 -15 <A 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
172 -14 1 B> 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
173 -15 1 <A 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
174 -16 <B 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
175 -15 2 C> 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
176 -16 2 <B 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
177 -17 <A 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
178 -16 1 B> 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
179 -15 1 2 C> 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
180 -16 1 2 <A 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
181 -15 1 1 D> 03 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
182 -14 13 A> 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
183 -13 14 B> 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
184 -12 14 2 C> 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
185 -13 14 2 <A 0 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
186 -12 15 D> 0 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
187 -11 16 A> 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
188 -10 17 B> 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1
189 -11 17 <A 0 0 2 0 2 0 2 0 2 0 2 0 0 1 1
190 -12 16 <B 03 2 0 2 0 2 0 2 0 2 0 0 1 1
191 -13 15 <A 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
192 -14 14 <B 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
193 -15 13 <A 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
194 -16 1 1 <B 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
195 -17 1 <A 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
196 -18 <B 0 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
197 -17 2 C> 0 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
198 -18 2 <B 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
199 -19 <A 0 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
200 -18 1 B> 0 1 2 0 2 0 2 03 2 0 2 0 2 0 2 0 2 0 0 1 1
After 200 steps (201 lines): state = B.
Produced 12 nonzeros.
Tape index -18, scanned [-19 .. 4].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 84 | 23 | 38 | 23 | 0 | 4 | 11 |
| B | 71 | 22 | 31 | 18 | 1 | 14 | 3 |
| C | 22 | 11 | 7 | 4 | 2 | 10 | 32 |
| D | 23 | 23 | 12 | ||||