Comment: This TM produces >8.9x10^4931 nonzeros in >7.9x10^9863 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 1LD | 1RH | 1 | right | B | 1 | left | D | 1 | right | H |
B | 1RC | 2LB | 2LD | 1 | right | C | 2 | left | B | 2 | left | D |
C | 1LC | 2RA | 0RD | 1 | left | C | 2 | right | A | 0 | right | D |
D | 1RC | 1LA | 0LA | 1 | right | C | 1 | left | A | 0 | left | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . . 0 1 1 B . . . . . . 10 2 2 C . . . . . . 110 3 1 C . . . . . . 111 4 2 A . . . . . . 121 5 1 D . . . . . . 121 6 0 A . . . . . . 101 7 -1 D . . . . . .0101 8 0 C . . . . . .1101 9 1 A . . . . . .1201 10 2 B . . . . . .1211 11 1 B . . . . . .1212 12 0 B . . . . . .1222 13 -1 D . . . . . .1222 14 -2 A . . . . . 01222 15 -1 B . . . . . 11222 16 -2 B . . . . . 12222 17 -3 B . . . . .022222 18 -2 C . . . . .122222 19 -1 D . . . . .102222 20 -2 A . . . . .100222 21 -1 B . . . . .110222 22 0 C . . . . .111222 23 1 D . . . . .111022 24 0 A . . . . .111002 25 1 B . . . . .111102 26 2 C . . . . .111112 27 3 D . . . . .1111100 28 4 C . . . . .11111010 29 3 C . . . . .11111011 30 4 A . . . . .11111021 31 3 D . . . . .11111021 32 2 A . . . . .11111001 33 3 B . . . . .11111101 34 4 C . . . . .11111111 35 5 A . . . . .111111120 36 6 B . . . . .1111111210 37 7 C . . . . .11111112110 38 6 C . . . . .11111112111 39 7 A . . . . .11111112121 40 6 D . . . . .11111112121 41 5 A . . . . .11111112101 42 4 D . . . . .11111112101 43 3 A . . . . .11111110101 44 2 D . . . . .11111110101 45 1 A . . . . .11111110101 46 0 D . . . . .11111110101 47 -1 A . . . . .11111110101 48 -2 D . . . . .11111110101 49 -3 A . . . . .11111110101 50 -4 D . . . . 011111110101 51 -3 C . . . . 111111110101 52 -2 A . . . . 121111110101 53 -3 D . . . . 121111110101 54 -4 A . . . . 101111110101 55 -5 D . . . .0101111110101 56 -4 C . . . .1101111110101 57 -3 A . . . .1201111110101 58 -2 B . . . .1211111110101 59 -3 B . . . .1212111110101 60 -4 B . . . .1222111110101 61 -5 D . . . .1222111110101 62 -6 A . . . 01222111110101 63 -5 B . . . 11222111110101 64 -6 B . . . 12222111110101 65 -7 B . . .022222111110101 66 -6 C . . .122222111110101 67 -5 D . . .102222111110101 68 -6 A . . .100222111110101 69 -5 B . . .110222111110101 70 -4 C . . .111222111110101 71 -3 D . . .111022111110101 72 -4 A . . .111002111110101 73 -3 B . . .111102111110101 74 -2 C . . .111112111110101 75 -1 D . . .111110111110101 76 -2 A . . .111110111110101 77 -1 B . . .111111111110101 78 -2 B . . .111111211110101 79 -3 B . . .111112211110101 80 -4 B . . .111122211110101 81 -5 B . . .111222211110101 82 -6 B . . .112222211110101 83 -7 B . . .122222211110101 84 -8 B . . 0222222211110101 85 -7 C . . 1222222211110101 86 -6 D . . 1022222211110101 87 -7 A . . 1002222211110101 88 -6 B . . 1102222211110101 89 -5 C . . 1112222211110101 90 -4 D . . 1110222211110101 91 -5 A . . 1110022211110101 92 -4 B . . 1111022211110101 93 -3 C . . 1111122211110101 94 -2 D . . 1111102211110101 95 -3 A . . 1111100211110101 96 -2 B . . 1111110211110101 97 -1 C . . 1111111211110101 98 0 D . . 1111111011110101 99 -1 A . . 1111111011110101 100 0 B . . 1111111111110101 101 -1 B . . 1111111121110101 102 -2 B . . 1111111221110101 103 -3 B . . 1111112221110101 104 -4 B . . 1111122221110101 105 -5 B . . 1111222221110101 106 -6 B . . 1112222221110101 107 -7 B . . 1122222221110101 108 -8 B . . 1222222221110101 109 -9 B . .02222222221110101 110 -8 C . .12222222221110101 111 -7 D . .10222222221110101 112 -8 A . .10022222221110101 113 -7 B . .11022222221110101 114 -6 C . .11122222221110101 115 -5 D . .11102222221110101 116 -6 A . .11100222221110101 117 -5 B . .11110222221110101 118 -4 C . .11111222221110101 119 -3 D . .11111022221110101 120 -4 A . .11111002221110101 121 -3 B . .11111102221110101 122 -2 C . .11111112221110101 123 -1 D . .11111110221110101 124 -2 A . .11111110021110101 125 -1 B . .11111111021110101 126 0 C . .11111111121110101 127 1 D . .11111111101110101 128 0 A . .11111111101110101 129 1 B . .11111111111110101 130 0 B . .11111111112110101 131 -1 B . .11111111122110101 132 -2 B . .11111111222110101 133 -3 B . .11111112222110101 134 -4 B . .11111122222110101 135 -5 B . .11111222222110101 136 -6 B . .11112222222110101 137 -7 B . .11122222222110101 138 -8 B . .11222222222110101 139 -9 B . .12222222222110101 140 -10 B . 022222222222110101 141 -9 C . 122222222222110101 142 -8 D . 102222222222110101 143 -9 A . 100222222222110101 144 -8 B . 110222222222110101 145 -7 C . 111222222222110101 146 -6 D . 111022222222110101 147 -7 A . 111002222222110101 148 -6 B . 111102222222110101 149 -5 C . 111112222222110101 150 -4 D . 111110222222110101 151 -5 A . 111110022222110101 152 -4 B . 111111022222110101 153 -3 C . 111111122222110101 154 -2 D . 111111102222110101 155 -3 A . 111111100222110101 156 -2 B . 111111110222110101 157 -1 C . 111111111222110101 158 0 D . 111111111022110101 159 -1 A . 111111111002110101 160 0 B . 111111111102110101 161 1 C . 111111111112110101 162 2 D . 111111111110110101 163 1 A . 111111111110110101 164 2 B . 111111111111110101 165 1 B . 111111111111210101 166 0 B . 111111111112210101 167 -1 B . 111111111122210101 168 -2 B . 111111111222210101 169 -3 B . 111111112222210101 170 -4 B . 111111122222210101 171 -5 B . 111111222222210101 172 -6 B . 111112222222210101 173 -7 B . 111122222222210101 174 -8 B . 111222222222210101 175 -9 B . 112222222222210101 176 -10 B . 122222222222210101 177 -11 B .0222222222222210101 178 -10 C .1222222222222210101 179 -9 D .1022222222222210101 180 -10 A .1002222222222210101 181 -9 B .1102222222222210101 182 -8 C .1112222222222210101 183 -7 D .1110222222222210101 184 -8 A .1110022222222210101 185 -7 B .1111022222222210101 186 -6 C .1111122222222210101 187 -5 D .1111102222222210101 188 -6 A .1111100222222210101 189 -5 B .1111110222222210101 190 -4 C .1111111222222210101 191 -3 D .1111111022222210101 192 -4 A .1111111002222210101 193 -3 B .1111111102222210101 194 -2 C .1111111112222210101 195 -1 D .1111111110222210101 196 -2 A .1111111110022210101 197 -1 B .1111111111022210101 198 0 C .1111111111122210101 199 1 D .1111111111102210101 200 0 A .1111111111100210101 After 200 steps (201 lines): state = A. Produced 15 nonzeros. Tape index 0, scanned [-11 .. 7].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 43 | 32 | 11 | 0 | 4 | ||
B | 80 | 30 | 48 | 2 | 1 | 10 | 12 |
C | 37 | 3 | 7 | 27 | 2 | 3 | 18 |
D | 40 | 4 | 9 | 27 | 7 | 13 | 5 |