4-state 3-symbol #g (T.J. & S. Ligocki)

Comment: This TM produces >8.9x10^4931 nonzeros in >7.9x10^9863 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LD 1RH 1 right B 1 left D 1 right H
B 1RC 2LB 2LD 1 right C 2 left B 2 left D
C 1LC 2RA 0RD 1 left C 2 right A 0 right D
D 1RC 1LA 0LA 1 right C 1 left A 0 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . . 0
     1    1 B . . . . . . 10
     2    2 C . . . . . . 110
     3    1 C . . . . . . 111
     4    2 A . . . . . . 121
     5    1 D . . . . . . 121
     6    0 A . . . . . . 101
     7   -1 D . . . . . .0101
     8    0 C . . . . . .1101
     9    1 A . . . . . .1201
    10    2 B . . . . . .1211
    11    1 B . . . . . .1212
    12    0 B . . . . . .1222
    13   -1 D . . . . . .1222
    14   -2 A . . . . . 01222
    15   -1 B . . . . . 11222
    16   -2 B . . . . . 12222
    17   -3 B . . . . .022222
    18   -2 C . . . . .122222
    19   -1 D . . . . .102222
    20   -2 A . . . . .100222
    21   -1 B . . . . .110222
    22    0 C . . . . .111222
    23    1 D . . . . .111022
    24    0 A . . . . .111002
    25    1 B . . . . .111102
    26    2 C . . . . .111112
    27    3 D . . . . .1111100
    28    4 C . . . . .11111010
    29    3 C . . . . .11111011
    30    4 A . . . . .11111021
    31    3 D . . . . .11111021
    32    2 A . . . . .11111001
    33    3 B . . . . .11111101
    34    4 C . . . . .11111111
    35    5 A . . . . .111111120
    36    6 B . . . . .1111111210
    37    7 C . . . . .11111112110
    38    6 C . . . . .11111112111
    39    7 A . . . . .11111112121
    40    6 D . . . . .11111112121
    41    5 A . . . . .11111112101
    42    4 D . . . . .11111112101
    43    3 A . . . . .11111110101
    44    2 D . . . . .11111110101
    45    1 A . . . . .11111110101
    46    0 D . . . . .11111110101
    47   -1 A . . . . .11111110101
    48   -2 D . . . . .11111110101
    49   -3 A . . . . .11111110101
    50   -4 D . . . . 011111110101
    51   -3 C . . . . 111111110101
    52   -2 A . . . . 121111110101
    53   -3 D . . . . 121111110101
    54   -4 A . . . . 101111110101
    55   -5 D . . . .0101111110101
    56   -4 C . . . .1101111110101
    57   -3 A . . . .1201111110101
    58   -2 B . . . .1211111110101
    59   -3 B . . . .1212111110101
    60   -4 B . . . .1222111110101
    61   -5 D . . . .1222111110101
    62   -6 A . . . 01222111110101
    63   -5 B . . . 11222111110101
    64   -6 B . . . 12222111110101
    65   -7 B . . .022222111110101
    66   -6 C . . .122222111110101
    67   -5 D . . .102222111110101
    68   -6 A . . .100222111110101
    69   -5 B . . .110222111110101
    70   -4 C . . .111222111110101
    71   -3 D . . .111022111110101
    72   -4 A . . .111002111110101
    73   -3 B . . .111102111110101
    74   -2 C . . .111112111110101
    75   -1 D . . .111110111110101
    76   -2 A . . .111110111110101
    77   -1 B . . .111111111110101
    78   -2 B . . .111111211110101
    79   -3 B . . .111112211110101
    80   -4 B . . .111122211110101
    81   -5 B . . .111222211110101
    82   -6 B . . .112222211110101
    83   -7 B . . .122222211110101
    84   -8 B . . 0222222211110101
    85   -7 C . . 1222222211110101
    86   -6 D . . 1022222211110101
    87   -7 A . . 1002222211110101
    88   -6 B . . 1102222211110101
    89   -5 C . . 1112222211110101
    90   -4 D . . 1110222211110101
    91   -5 A . . 1110022211110101
    92   -4 B . . 1111022211110101
    93   -3 C . . 1111122211110101
    94   -2 D . . 1111102211110101
    95   -3 A . . 1111100211110101
    96   -2 B . . 1111110211110101
    97   -1 C . . 1111111211110101
    98    0 D . . 1111111011110101
    99   -1 A . . 1111111011110101
   100    0 B . . 1111111111110101
   101   -1 B . . 1111111121110101
   102   -2 B . . 1111111221110101
   103   -3 B . . 1111112221110101
   104   -4 B . . 1111122221110101
   105   -5 B . . 1111222221110101
   106   -6 B . . 1112222221110101
   107   -7 B . . 1122222221110101
   108   -8 B . . 1222222221110101
   109   -9 B . .02222222221110101
   110   -8 C . .12222222221110101
   111   -7 D . .10222222221110101
   112   -8 A . .10022222221110101
   113   -7 B . .11022222221110101
   114   -6 C . .11122222221110101
   115   -5 D . .11102222221110101
   116   -6 A . .11100222221110101
   117   -5 B . .11110222221110101
   118   -4 C . .11111222221110101
   119   -3 D . .11111022221110101
   120   -4 A . .11111002221110101
   121   -3 B . .11111102221110101
   122   -2 C . .11111112221110101
   123   -1 D . .11111110221110101
   124   -2 A . .11111110021110101
   125   -1 B . .11111111021110101
   126    0 C . .11111111121110101
   127    1 D . .11111111101110101
   128    0 A . .11111111101110101
   129    1 B . .11111111111110101
   130    0 B . .11111111112110101
   131   -1 B . .11111111122110101
   132   -2 B . .11111111222110101
   133   -3 B . .11111112222110101
   134   -4 B . .11111122222110101
   135   -5 B . .11111222222110101
   136   -6 B . .11112222222110101
   137   -7 B . .11122222222110101
   138   -8 B . .11222222222110101
   139   -9 B . .12222222222110101
   140  -10 B . 022222222222110101
   141   -9 C . 122222222222110101
   142   -8 D . 102222222222110101
   143   -9 A . 100222222222110101
   144   -8 B . 110222222222110101
   145   -7 C . 111222222222110101
   146   -6 D . 111022222222110101
   147   -7 A . 111002222222110101
   148   -6 B . 111102222222110101
   149   -5 C . 111112222222110101
   150   -4 D . 111110222222110101
   151   -5 A . 111110022222110101
   152   -4 B . 111111022222110101
   153   -3 C . 111111122222110101
   154   -2 D . 111111102222110101
   155   -3 A . 111111100222110101
   156   -2 B . 111111110222110101
   157   -1 C . 111111111222110101
   158    0 D . 111111111022110101
   159   -1 A . 111111111002110101
   160    0 B . 111111111102110101
   161    1 C . 111111111112110101
   162    2 D . 111111111110110101
   163    1 A . 111111111110110101
   164    2 B . 111111111111110101
   165    1 B . 111111111111210101
   166    0 B . 111111111112210101
   167   -1 B . 111111111122210101
   168   -2 B . 111111111222210101
   169   -3 B . 111111112222210101
   170   -4 B . 111111122222210101
   171   -5 B . 111111222222210101
   172   -6 B . 111112222222210101
   173   -7 B . 111122222222210101
   174   -8 B . 111222222222210101
   175   -9 B . 112222222222210101
   176  -10 B . 122222222222210101
   177  -11 B .0222222222222210101
   178  -10 C .1222222222222210101
   179   -9 D .1022222222222210101
   180  -10 A .1002222222222210101
   181   -9 B .1102222222222210101
   182   -8 C .1112222222222210101
   183   -7 D .1110222222222210101
   184   -8 A .1110022222222210101
   185   -7 B .1111022222222210101
   186   -6 C .1111122222222210101
   187   -5 D .1111102222222210101
   188   -6 A .1111100222222210101
   189   -5 B .1111110222222210101
   190   -4 C .1111111222222210101
   191   -3 D .1111111022222210101
   192   -4 A .1111111002222210101
   193   -3 B .1111111102222210101
   194   -2 C .1111111112222210101
   195   -1 D .1111111110222210101
   196   -2 A .1111111110022210101
   197   -1 B .1111111111022210101
   198    0 C .1111111111122210101
   199    1 D .1111111111102210101
   200    0 A .1111111111100210101

After 200 steps (201 lines): state = A.
Produced     15 nonzeros.
Tape index 0, scanned [-11 .. 7].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 43 32 11   0 4  
B 80 30 48 2 1 10 12
C 37 3 7 27 2 3 18
D 40 4 9 27 7 13 5
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:14:13 CEST 2010