Comment: This TM produces >8.9x10^4931 nonzeros in >7.9x10^9863 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 1LD | 1RH | 1 | right | B | 1 | left | D | 1 | right | H |
| B | 1RC | 2LB | 2LD | 1 | right | C | 2 | left | B | 2 | left | D |
| C | 1LC | 2RA | 0RD | 1 | left | C | 2 | right | A | 0 | right | D |
| D | 1RC | 1LA | 0LA | 1 | right | C | 1 | left | A | 0 | left | A |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . . . . 0
1 1 B . . . . . . 10
2 2 C . . . . . . 110
3 1 C . . . . . . 111
4 2 A . . . . . . 121
5 1 D . . . . . . 121
6 0 A . . . . . . 101
7 -1 D . . . . . .0101
8 0 C . . . . . .1101
9 1 A . . . . . .1201
10 2 B . . . . . .1211
11 1 B . . . . . .1212
12 0 B . . . . . .1222
13 -1 D . . . . . .1222
14 -2 A . . . . . 01222
15 -1 B . . . . . 11222
16 -2 B . . . . . 12222
17 -3 B . . . . .022222
18 -2 C . . . . .122222
19 -1 D . . . . .102222
20 -2 A . . . . .100222
21 -1 B . . . . .110222
22 0 C . . . . .111222
23 1 D . . . . .111022
24 0 A . . . . .111002
25 1 B . . . . .111102
26 2 C . . . . .111112
27 3 D . . . . .1111100
28 4 C . . . . .11111010
29 3 C . . . . .11111011
30 4 A . . . . .11111021
31 3 D . . . . .11111021
32 2 A . . . . .11111001
33 3 B . . . . .11111101
34 4 C . . . . .11111111
35 5 A . . . . .111111120
36 6 B . . . . .1111111210
37 7 C . . . . .11111112110
38 6 C . . . . .11111112111
39 7 A . . . . .11111112121
40 6 D . . . . .11111112121
41 5 A . . . . .11111112101
42 4 D . . . . .11111112101
43 3 A . . . . .11111110101
44 2 D . . . . .11111110101
45 1 A . . . . .11111110101
46 0 D . . . . .11111110101
47 -1 A . . . . .11111110101
48 -2 D . . . . .11111110101
49 -3 A . . . . .11111110101
50 -4 D . . . . 011111110101
51 -3 C . . . . 111111110101
52 -2 A . . . . 121111110101
53 -3 D . . . . 121111110101
54 -4 A . . . . 101111110101
55 -5 D . . . .0101111110101
56 -4 C . . . .1101111110101
57 -3 A . . . .1201111110101
58 -2 B . . . .1211111110101
59 -3 B . . . .1212111110101
60 -4 B . . . .1222111110101
61 -5 D . . . .1222111110101
62 -6 A . . . 01222111110101
63 -5 B . . . 11222111110101
64 -6 B . . . 12222111110101
65 -7 B . . .022222111110101
66 -6 C . . .122222111110101
67 -5 D . . .102222111110101
68 -6 A . . .100222111110101
69 -5 B . . .110222111110101
70 -4 C . . .111222111110101
71 -3 D . . .111022111110101
72 -4 A . . .111002111110101
73 -3 B . . .111102111110101
74 -2 C . . .111112111110101
75 -1 D . . .111110111110101
76 -2 A . . .111110111110101
77 -1 B . . .111111111110101
78 -2 B . . .111111211110101
79 -3 B . . .111112211110101
80 -4 B . . .111122211110101
81 -5 B . . .111222211110101
82 -6 B . . .112222211110101
83 -7 B . . .122222211110101
84 -8 B . . 0222222211110101
85 -7 C . . 1222222211110101
86 -6 D . . 1022222211110101
87 -7 A . . 1002222211110101
88 -6 B . . 1102222211110101
89 -5 C . . 1112222211110101
90 -4 D . . 1110222211110101
91 -5 A . . 1110022211110101
92 -4 B . . 1111022211110101
93 -3 C . . 1111122211110101
94 -2 D . . 1111102211110101
95 -3 A . . 1111100211110101
96 -2 B . . 1111110211110101
97 -1 C . . 1111111211110101
98 0 D . . 1111111011110101
99 -1 A . . 1111111011110101
100 0 B . . 1111111111110101
101 -1 B . . 1111111121110101
102 -2 B . . 1111111221110101
103 -3 B . . 1111112221110101
104 -4 B . . 1111122221110101
105 -5 B . . 1111222221110101
106 -6 B . . 1112222221110101
107 -7 B . . 1122222221110101
108 -8 B . . 1222222221110101
109 -9 B . .02222222221110101
110 -8 C . .12222222221110101
111 -7 D . .10222222221110101
112 -8 A . .10022222221110101
113 -7 B . .11022222221110101
114 -6 C . .11122222221110101
115 -5 D . .11102222221110101
116 -6 A . .11100222221110101
117 -5 B . .11110222221110101
118 -4 C . .11111222221110101
119 -3 D . .11111022221110101
120 -4 A . .11111002221110101
121 -3 B . .11111102221110101
122 -2 C . .11111112221110101
123 -1 D . .11111110221110101
124 -2 A . .11111110021110101
125 -1 B . .11111111021110101
126 0 C . .11111111121110101
127 1 D . .11111111101110101
128 0 A . .11111111101110101
129 1 B . .11111111111110101
130 0 B . .11111111112110101
131 -1 B . .11111111122110101
132 -2 B . .11111111222110101
133 -3 B . .11111112222110101
134 -4 B . .11111122222110101
135 -5 B . .11111222222110101
136 -6 B . .11112222222110101
137 -7 B . .11122222222110101
138 -8 B . .11222222222110101
139 -9 B . .12222222222110101
140 -10 B . 022222222222110101
141 -9 C . 122222222222110101
142 -8 D . 102222222222110101
143 -9 A . 100222222222110101
144 -8 B . 110222222222110101
145 -7 C . 111222222222110101
146 -6 D . 111022222222110101
147 -7 A . 111002222222110101
148 -6 B . 111102222222110101
149 -5 C . 111112222222110101
150 -4 D . 111110222222110101
151 -5 A . 111110022222110101
152 -4 B . 111111022222110101
153 -3 C . 111111122222110101
154 -2 D . 111111102222110101
155 -3 A . 111111100222110101
156 -2 B . 111111110222110101
157 -1 C . 111111111222110101
158 0 D . 111111111022110101
159 -1 A . 111111111002110101
160 0 B . 111111111102110101
161 1 C . 111111111112110101
162 2 D . 111111111110110101
163 1 A . 111111111110110101
164 2 B . 111111111111110101
165 1 B . 111111111111210101
166 0 B . 111111111112210101
167 -1 B . 111111111122210101
168 -2 B . 111111111222210101
169 -3 B . 111111112222210101
170 -4 B . 111111122222210101
171 -5 B . 111111222222210101
172 -6 B . 111112222222210101
173 -7 B . 111122222222210101
174 -8 B . 111222222222210101
175 -9 B . 112222222222210101
176 -10 B . 122222222222210101
177 -11 B .0222222222222210101
178 -10 C .1222222222222210101
179 -9 D .1022222222222210101
180 -10 A .1002222222222210101
181 -9 B .1102222222222210101
182 -8 C .1112222222222210101
183 -7 D .1110222222222210101
184 -8 A .1110022222222210101
185 -7 B .1111022222222210101
186 -6 C .1111122222222210101
187 -5 D .1111102222222210101
188 -6 A .1111100222222210101
189 -5 B .1111110222222210101
190 -4 C .1111111222222210101
191 -3 D .1111111022222210101
192 -4 A .1111111002222210101
193 -3 B .1111111102222210101
194 -2 C .1111111112222210101
195 -1 D .1111111110222210101
196 -2 A .1111111110022210101
197 -1 B .1111111111022210101
198 0 C .1111111111122210101
199 1 D .1111111111102210101
200 0 A .1111111111100210101
After 200 steps (201 lines): state = A.
Produced 15 nonzeros.
Tape index 0, scanned [-11 .. 7].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 43 | 32 | 11 | 0 | 4 | ||
| B | 80 | 30 | 48 | 2 | 1 | 10 | 12 |
| C | 37 | 3 | 7 | 27 | 2 | 3 | 18 |
| D | 40 | 4 | 9 | 27 | 7 | 13 | 5 |