Comment: This TM produces >1.6x10^809 nonzeros in >7.7x10^1618 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2RC | 1RA | 1 | right | B | 2 | right | C | 1 | right | A |
B | 2LC | 1LA | 1LB | 2 | left | C | 1 | left | A | 1 | left | B |
C | 2LD | 0LB | 0RC | 2 | left | D | 0 | left | B | 0 | right | C |
D | 0RD | 1RH | 0RA | 0 | right | D | 1 | right | H | 0 | right | A |
The same TM just simple. Simulation is done with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . . 0 1 1 B . . . . . . 10 2 0 C . . . . . . 12 3 -1 B . . . . . .002 4 -2 C . . . . . 0202 5 -3 D . . . . .02202 6 -2 D . . . . .02202 7 -1 A . . . . .00202 8 0 A . . . . .00102 9 1 B . . . . .00112 10 0 B . . . . .00111 11 -1 A . . . . .00111 12 0 C . . . . .00211 13 -1 B . . . . .00201 14 -2 B . . . . .00101 15 -3 C . . . . .02101 16 -4 D . . . . 022101 17 -3 D . . . . 022101 18 -2 A . . . . 002101 19 -1 A . . . . 001101 20 0 C . . . . 001201 21 -1 D . . . . 001221 22 0 A . . . . 001021 23 1 A . . . . 001011 24 2 C . . . . 0010120 25 1 D . . . . 0010122 26 2 A . . . . 0010102 27 3 A . . . . 00101010 28 4 B . . . . 001010110 29 3 C . . . . 001010112 30 2 B . . . . 001010102 31 1 A . . . . 001010102 32 2 B . . . . 001011102 33 1 A . . . . 001011102 34 2 C . . . . 001012102 35 1 B . . . . 001012002 36 0 B . . . . 001011002 37 -1 A . . . . 001011002 38 0 B . . . . 001111002 39 -1 A . . . . 001111002 40 0 C . . . . 001211002 41 -1 B . . . . 001201002 42 -2 B . . . . 001101002 43 -3 A . . . . 001101002 44 -2 B . . . . 011101002 45 -3 A . . . . 011101002 46 -2 C . . . . 021101002 47 -3 B . . . . 020101002 48 -4 B . . . . 010101002 49 -5 C . . . .0210101002 50 -6 D . . . 02210101002 51 -5 D . . . 02210101002 52 -4 A . . . 00210101002 53 -3 A . . . 00110101002 54 -2 C . . . 00120101002 55 -3 D . . . 00122101002 56 -2 A . . . 00102101002 57 -1 A . . . 00101101002 58 0 C . . . 00101201002 59 -1 D . . . 00101221002 60 0 A . . . 00101021002 61 1 A . . . 00101011002 62 2 C . . . 00101012002 63 1 D . . . 00101012202 64 2 A . . . 00101010202 65 3 A . . . 00101010102 66 4 B . . . 00101010112 67 3 B . . . 00101010111 68 2 A . . . 00101010111 69 3 C . . . 00101010211 70 2 B . . . 00101010201 71 1 B . . . 00101010101 72 0 C . . . 00101012101 73 -1 B . . . 00101002101 74 -2 C . . . 00101202101 75 -3 B . . . 00100202101 76 -4 C . . . 00120202101 77 -5 B . . . 00020202101 78 -6 C . . . 02020202101 79 -7 D . . .022020202101 80 -6 D . . .022020202101 81 -5 A . . .002020202101 82 -4 A . . .001020202101 83 -3 B . . .001120202101 84 -4 B . . .001110202101 85 -5 A . . .001110202101 86 -4 C . . .002110202101 87 -5 B . . .002010202101 88 -6 B . . .001010202101 89 -7 C . . .021010202101 90 -8 D . . 0221010202101 91 -7 D . . 0221010202101 92 -6 A . . 0021010202101 93 -5 A . . 0011010202101 94 -4 C . . 0012010202101 95 -5 D . . 0012210202101 96 -4 A . . 0010210202101 97 -3 A . . 0010110202101 98 -2 C . . 0010120202101 99 -3 D . . 0010122202101 100 -2 A . . 0010102202101 + 102 0 A . . 0010101102101 by A/2 * 2 103 1 B . . 0010101112101 104 0 B . . 0010101111101 105 -1 A . . 0010101111101 106 0 C . . 0010101211101 107 -1 B . . 0010101201101 108 -2 B . . 0010101101101 109 -3 A . . 0010101101101 110 -2 B . . 0010111101101 111 -3 A . . 0010111101101 112 -2 C . . 0010121101101 113 -3 B . . 0010120101101 114 -4 B . . 0010110101101 115 -5 A . . 0010110101101 116 -4 B . . 0011110101101 117 -5 A . . 0011110101101 118 -4 C . . 0012110101101 119 -5 B . . 0012010101101 120 -6 B . . 0011010101101 121 -7 A . . 0011010101101 122 -6 B . . 0111010101101 123 -7 A . . 0111010101101 124 -6 C . . 0211010101101 125 -7 B . . 0201010101101 126 -8 B . . 0101010101101 127 -9 C . .02101010101101 128 -10 D . 022101010101101 129 -9 D . 022101010101101 130 -8 A . 002101010101101 131 -7 A . 001101010101101 132 -6 C . 001201010101101 133 -7 D . 001221010101101 134 -6 A . 001021010101101 135 -5 A . 001011010101101 136 -4 C . 001012010101101 137 -5 D . 001012210101101 138 -4 A . 001010210101101 139 -3 A . 001010110101101 140 -2 C . 001010120101101 141 -3 D . 001010122101101 142 -2 A . 001010102101101 143 -1 A . 001010101101101 144 0 C . 001010101201101 145 -1 D . 001010101221101 146 0 A . 001010101021101 147 1 A . 001010101011101 148 2 C . 001010101012101 149 1 B . 001010101012001 150 0 B . 001010101011001 151 -1 A . 001010101011001 152 0 B . 001010101111001 153 -1 A . 001010101111001 154 0 C . 001010101211001 155 -1 B . 001010101201001 156 -2 B . 001010101101001 157 -3 A . 001010101101001 158 -2 B . 001010111101001 159 -3 A . 001010111101001 160 -2 C . 001010121101001 161 -3 B . 001010120101001 162 -4 B . 001010110101001 163 -5 A . 001010110101001 164 -4 B . 001011110101001 165 -5 A . 001011110101001 166 -4 C . 001012110101001 167 -5 B . 001012010101001 168 -6 B . 001011010101001 169 -7 A . 001011010101001 170 -6 B . 001111010101001 171 -7 A . 001111010101001 172 -6 C . 001211010101001 173 -7 B . 001201010101001 174 -8 B . 001101010101001 175 -9 A . 001101010101001 176 -8 B . 011101010101001 177 -9 A . 011101010101001 178 -8 C . 021101010101001 179 -9 B . 020101010101001 180 -10 B . 010101010101001 181 -11 C .0210101010101001 182 -12 D 02210101010101001 183 -11 D 02210101010101001 184 -10 A 00210101010101001 185 -9 A 00110101010101001 186 -8 C 00120101010101001 187 -9 D 00122101010101001 188 -8 A 00102101010101001 189 -7 A 00101101010101001 190 -6 C 00101201010101001 191 -7 D 00101221010101001 192 -6 A 00101021010101001 193 -5 A 00101011010101001 194 -4 C 00101012010101001 195 -5 D 00101012210101001 196 -4 A 00101010210101001 197 -3 A 00101010110101001 198 -2 C 00101010120101001 199 -3 D 00101010122101001 200 -2 A 00101010102101001 201 -1 A 00101010101101001 After 201 steps (201 lines): state = A. Produced 8 nonzeros. Tape index -1, scanned [-12 .. 4].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 71 | 17 | 31 | 23 | 0 | 11 | 7 |
B | 58 | 12 | 26 | 20 | 1 | 10 | 9 |
C | 43 | 22 | 21 | 4 | 2 | ||
D | 29 | 7 | 22 | 5 | 6 |