4-state 3-symbol #c (T.J. & S. Ligocki)

Comment: This TM produces >1.6x10^809 nonzeros in >7.7x10^1618 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RC 1RA 1 right B 2 right C 1 right A
B 2LC 1LA 1LB 2 left C 1 left A 1 left B
C 2LD 0LB 0RC 2 left D 0 left B 0 right C
D 0RD 1RH 0RA 0 right D 1 right H 0 right A
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . . 0
     1    1 B . . . . . . 10
     2    0 C . . . . . . 12
     3   -1 B . . . . . .002
     4   -2 C . . . . . 0202
     5   -3 D . . . . .02202
     6   -2 D . . . . .02202
     7   -1 A . . . . .00202
     8    0 A . . . . .00102
     9    1 B . . . . .00112
    10    0 B . . . . .00111
    11   -1 A . . . . .00111
    12    0 C . . . . .00211
    13   -1 B . . . . .00201
    14   -2 B . . . . .00101
    15   -3 C . . . . .02101
    16   -4 D . . . . 022101
    17   -3 D . . . . 022101
    18   -2 A . . . . 002101
    19   -1 A . . . . 001101
    20    0 C . . . . 001201
    21   -1 D . . . . 001221
    22    0 A . . . . 001021
    23    1 A . . . . 001011
    24    2 C . . . . 0010120
    25    1 D . . . . 0010122
    26    2 A . . . . 0010102
    27    3 A . . . . 00101010
    28    4 B . . . . 001010110
    29    3 C . . . . 001010112
    30    2 B . . . . 001010102
    31    1 A . . . . 001010102
    32    2 B . . . . 001011102
    33    1 A . . . . 001011102
    34    2 C . . . . 001012102
    35    1 B . . . . 001012002
    36    0 B . . . . 001011002
    37   -1 A . . . . 001011002
    38    0 B . . . . 001111002
    39   -1 A . . . . 001111002
    40    0 C . . . . 001211002
    41   -1 B . . . . 001201002
    42   -2 B . . . . 001101002
    43   -3 A . . . . 001101002
    44   -2 B . . . . 011101002
    45   -3 A . . . . 011101002
    46   -2 C . . . . 021101002
    47   -3 B . . . . 020101002
    48   -4 B . . . . 010101002
    49   -5 C . . . .0210101002
    50   -6 D . . . 02210101002
    51   -5 D . . . 02210101002
    52   -4 A . . . 00210101002
    53   -3 A . . . 00110101002
    54   -2 C . . . 00120101002
    55   -3 D . . . 00122101002
    56   -2 A . . . 00102101002
    57   -1 A . . . 00101101002
    58    0 C . . . 00101201002
    59   -1 D . . . 00101221002
    60    0 A . . . 00101021002
    61    1 A . . . 00101011002
    62    2 C . . . 00101012002
    63    1 D . . . 00101012202
    64    2 A . . . 00101010202
    65    3 A . . . 00101010102
    66    4 B . . . 00101010112
    67    3 B . . . 00101010111
    68    2 A . . . 00101010111
    69    3 C . . . 00101010211
    70    2 B . . . 00101010201
    71    1 B . . . 00101010101
    72    0 C . . . 00101012101
    73   -1 B . . . 00101002101
    74   -2 C . . . 00101202101
    75   -3 B . . . 00100202101
    76   -4 C . . . 00120202101
    77   -5 B . . . 00020202101
    78   -6 C . . . 02020202101
    79   -7 D . . .022020202101
    80   -6 D . . .022020202101
    81   -5 A . . .002020202101
    82   -4 A . . .001020202101
    83   -3 B . . .001120202101
    84   -4 B . . .001110202101
    85   -5 A . . .001110202101
    86   -4 C . . .002110202101
    87   -5 B . . .002010202101
    88   -6 B . . .001010202101
    89   -7 C . . .021010202101
    90   -8 D . . 0221010202101
    91   -7 D . . 0221010202101
    92   -6 A . . 0021010202101
    93   -5 A . . 0011010202101
    94   -4 C . . 0012010202101
    95   -5 D . . 0012210202101
    96   -4 A . . 0010210202101
    97   -3 A . . 0010110202101
    98   -2 C . . 0010120202101
    99   -3 D . . 0010122202101
   100   -2 A . . 0010102202101
+  102    0 A . . 0010101102101  by A/2 * 2
   103    1 B . . 0010101112101
   104    0 B . . 0010101111101
   105   -1 A . . 0010101111101
   106    0 C . . 0010101211101
   107   -1 B . . 0010101201101
   108   -2 B . . 0010101101101
   109   -3 A . . 0010101101101
   110   -2 B . . 0010111101101
   111   -3 A . . 0010111101101
   112   -2 C . . 0010121101101
   113   -3 B . . 0010120101101
   114   -4 B . . 0010110101101
   115   -5 A . . 0010110101101
   116   -4 B . . 0011110101101
   117   -5 A . . 0011110101101
   118   -4 C . . 0012110101101
   119   -5 B . . 0012010101101
   120   -6 B . . 0011010101101
   121   -7 A . . 0011010101101
   122   -6 B . . 0111010101101
   123   -7 A . . 0111010101101
   124   -6 C . . 0211010101101
   125   -7 B . . 0201010101101
   126   -8 B . . 0101010101101
   127   -9 C . .02101010101101
   128  -10 D . 022101010101101
   129   -9 D . 022101010101101
   130   -8 A . 002101010101101
   131   -7 A . 001101010101101
   132   -6 C . 001201010101101
   133   -7 D . 001221010101101
   134   -6 A . 001021010101101
   135   -5 A . 001011010101101
   136   -4 C . 001012010101101
   137   -5 D . 001012210101101
   138   -4 A . 001010210101101
   139   -3 A . 001010110101101
   140   -2 C . 001010120101101
   141   -3 D . 001010122101101
   142   -2 A . 001010102101101
   143   -1 A . 001010101101101
   144    0 C . 001010101201101
   145   -1 D . 001010101221101
   146    0 A . 001010101021101
   147    1 A . 001010101011101
   148    2 C . 001010101012101
   149    1 B . 001010101012001
   150    0 B . 001010101011001
   151   -1 A . 001010101011001
   152    0 B . 001010101111001
   153   -1 A . 001010101111001
   154    0 C . 001010101211001
   155   -1 B . 001010101201001
   156   -2 B . 001010101101001
   157   -3 A . 001010101101001
   158   -2 B . 001010111101001
   159   -3 A . 001010111101001
   160   -2 C . 001010121101001
   161   -3 B . 001010120101001
   162   -4 B . 001010110101001
   163   -5 A . 001010110101001
   164   -4 B . 001011110101001
   165   -5 A . 001011110101001
   166   -4 C . 001012110101001
   167   -5 B . 001012010101001
   168   -6 B . 001011010101001
   169   -7 A . 001011010101001
   170   -6 B . 001111010101001
   171   -7 A . 001111010101001
   172   -6 C . 001211010101001
   173   -7 B . 001201010101001
   174   -8 B . 001101010101001
   175   -9 A . 001101010101001
   176   -8 B . 011101010101001
   177   -9 A . 011101010101001
   178   -8 C . 021101010101001
   179   -9 B . 020101010101001
   180  -10 B . 010101010101001
   181  -11 C .0210101010101001
   182  -12 D 02210101010101001
   183  -11 D 02210101010101001
   184  -10 A 00210101010101001
   185   -9 A 00110101010101001
   186   -8 C 00120101010101001
   187   -9 D 00122101010101001
   188   -8 A 00102101010101001
   189   -7 A 00101101010101001
   190   -6 C 00101201010101001
   191   -7 D 00101221010101001
   192   -6 A 00101021010101001
   193   -5 A 00101011010101001
   194   -4 C 00101012010101001
   195   -5 D 00101012210101001
   196   -4 A 00101010210101001
   197   -3 A 00101010110101001
   198   -2 C 00101010120101001
   199   -3 D 00101010122101001
   200   -2 A 00101010102101001
   201   -1 A 00101010101101001

After 201 steps (201 lines): state = A.
Produced     8 nonzeros.
Tape index -1, scanned [-12 .. 4].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 71 17 31 23 0 11 7
B 58 12 26 20 1 10 9
C 43 22 21   4 2  
D 29 7   22 5   6
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:14:03 CEST 2010