Comment: This TM produces >1.1x10^713 nonzeros in >1.5x10^1426 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 0LC | 1RH | 1 | right | B | 0 | left | C | 1 | right | H |
B | 2LC | 1RD | 0LB | 2 | left | C | 1 | right | D | 0 | left | B |
C | 2LA | 1LC | 1LA | 2 | left | A | 1 | left | C | 1 | left | A |
D | 1RB | 2LD | 2RA | 1 | right | B | 2 | left | D | 2 | right | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . . . . 0 1 1 B . . . . . . . . 10 2 0 C . . . . . . . . 12 3 -1 C . . . . . . . .012 4 -2 A . . . . . . . 0212 5 -1 B . . . . . . . 1212 6 -2 B . . . . . . . 1012 7 -1 D . . . . . . . 1012 8 0 B . . . . . . . 1112 9 1 D . . . . . . . 1112 10 2 A . . . . . . . 11120 11 3 B . . . . . . . 111210 12 2 C . . . . . . . 111212 13 1 C . . . . . . . 111212 14 0 A . . . . . . . 111112 15 -1 C . . . . . . . 110112 16 -2 C . . . . . . . 110112 17 -3 C . . . . . . .0110112 18 -4 A . . . . . . 02110112 19 -3 B . . . . . . 12110112 20 -4 B . . . . . . 10110112 21 -3 D . . . . . . 10110112 22 -2 B . . . . . . 11110112 23 -1 D . . . . . . 11110112 24 -2 D . . . . . . 11120112 25 -3 D . . . . . . 11220112 26 -4 D . . . . . . 12220112 27 -5 D . . . . . .022220112 28 -4 B . . . . . .122220112 29 -5 B . . . . . .102220112 30 -4 D . . . . . .102220112 31 -3 B . . . . . .112220112 32 -4 B . . . . . .110220112 33 -3 D . . . . . .110220112 34 -2 B . . . . . .111220112 35 -3 B . . . . . .111020112 36 -2 D . . . . . .111020112 37 -1 B . . . . . .111120112 38 -2 B . . . . . .111100112 39 -1 D . . . . . .111100112 40 0 B . . . . . .111110112 41 -1 C . . . . . .111112112 42 -2 C . . . . . .111112112 43 -3 C . . . . . .111112112 44 -4 C . . . . . .111112112 45 -5 C . . . . . .111112112 46 -6 C . . . . . 0111112112 47 -7 A . . . . .02111112112 48 -6 B . . . . .12111112112 49 -7 B . . . . .10111112112 50 -6 D . . . . .10111112112 51 -5 B . . . . .11111112112 52 -4 D . . . . .11111112112 53 -5 D . . . . .11121112112 54 -6 D . . . . .11221112112 55 -7 D . . . . .12221112112 56 -8 D . . . . 022221112112 57 -7 B . . . . 122221112112 58 -8 B . . . . 102221112112 59 -7 D . . . . 102221112112 60 -6 B . . . . 112221112112 61 -7 B . . . . 110221112112 62 -6 D . . . . 110221112112 63 -5 B . . . . 111221112112 64 -6 B . . . . 111021112112 65 -5 D . . . . 111021112112 66 -4 B . . . . 111121112112 67 -5 B . . . . 111101112112 68 -4 D . . . . 111101112112 69 -3 B . . . . 111111112112 70 -2 D . . . . 111111112112 71 -3 D . . . . 111111212112 72 -4 D . . . . 111112212112 73 -5 D . . . . 111122212112 74 -6 D . . . . 111222212112 75 -7 D . . . . 112222212112 76 -8 D . . . . 122222212112 77 -9 D . . . .0222222212112 78 -8 B . . . .1222222212112 79 -9 B . . . .1022222212112 80 -8 D . . . .1022222212112 81 -7 B . . . .1122222212112 82 -8 B . . . .1102222212112 83 -7 D . . . .1102222212112 84 -6 B . . . .1112222212112 85 -7 B . . . .1110222212112 86 -6 D . . . .1110222212112 87 -5 B . . . .1111222212112 88 -6 B . . . .1111022212112 89 -5 D . . . .1111022212112 90 -4 B . . . .1111122212112 91 -5 B . . . .1111102212112 92 -4 D . . . .1111102212112 93 -3 B . . . .1111112212112 94 -4 B . . . .1111110212112 95 -3 D . . . .1111110212112 96 -2 B . . . .1111111212112 97 -3 B . . . .1111111012112 98 -2 D . . . .1111111012112 99 -1 B . . . .1111111112112 100 0 D . . . .1111111112112 101 1 A . . . .1111111112112 102 0 C . . . .1111111112012 103 -1 A . . . .1111111111012 104 -2 C . . . .1111111101012 105 -3 C . . . .1111111101012 106 -4 C . . . .1111111101012 107 -5 C . . . .1111111101012 108 -6 C . . . .1111111101012 109 -7 C . . . .1111111101012 110 -8 C . . . .1111111101012 111 -9 C . . . .1111111101012 112 -10 C . . . 01111111101012 113 -11 A . . .021111111101012 114 -10 B . . .121111111101012 115 -11 B . . .101111111101012 116 -10 D . . .101111111101012 117 -9 B . . .111111111101012 118 -8 D . . .111111111101012 119 -9 D . . .111211111101012 120 -10 D . . .112211111101012 121 -11 D . . .122211111101012 122 -12 D . . 0222211111101012 123 -11 B . . 1222211111101012 124 -12 B . . 1022211111101012 125 -11 D . . 1022211111101012 126 -10 B . . 1122211111101012 127 -11 B . . 1102211111101012 128 -10 D . . 1102211111101012 129 -9 B . . 1112211111101012 130 -10 B . . 1110211111101012 131 -9 D . . 1110211111101012 132 -8 B . . 1111211111101012 133 -9 B . . 1111011111101012 134 -8 D . . 1111011111101012 135 -7 B . . 1111111111101012 136 -6 D . . 1111111111101012 137 -7 D . . 1111112111101012 138 -8 D . . 1111122111101012 139 -9 D . . 1111222111101012 140 -10 D . . 1112222111101012 141 -11 D . . 1122222111101012 142 -12 D . . 1222222111101012 143 -13 D . .02222222111101012 144 -12 B . .12222222111101012 145 -13 B . .10222222111101012 146 -12 D . .10222222111101012 147 -11 B . .11222222111101012 148 -12 B . .11022222111101012 149 -11 D . .11022222111101012 150 -10 B . .11122222111101012 151 -11 B . .11102222111101012 152 -10 D . .11102222111101012 153 -9 B . .11112222111101012 154 -10 B . .11110222111101012 155 -9 D . .11110222111101012 156 -8 B . .11111222111101012 157 -9 B . .11111022111101012 158 -8 D . .11111022111101012 159 -7 B . .11111122111101012 160 -8 B . .11111102111101012 161 -7 D . .11111102111101012 162 -6 B . .11111112111101012 163 -7 B . .11111110111101012 164 -6 D . .11111110111101012 165 -5 B . .11111111111101012 166 -4 D . .11111111111101012 167 -5 D . .11111111121101012 168 -6 D . .11111111221101012 169 -7 D . .11111112221101012 170 -8 D . .11111122221101012 171 -9 D . .11111222221101012 172 -10 D . .11112222221101012 173 -11 D . .11122222221101012 174 -12 D . .11222222221101012 175 -13 D . .12222222221101012 176 -14 D . 022222222221101012 177 -13 B . 122222222221101012 178 -14 B . 102222222221101012 179 -13 D . 102222222221101012 180 -12 B . 112222222221101012 181 -13 B . 110222222221101012 182 -12 D . 110222222221101012 183 -11 B . 111222222221101012 184 -12 B . 111022222221101012 185 -11 D . 111022222221101012 186 -10 B . 111122222221101012 187 -11 B . 111102222221101012 188 -10 D . 111102222221101012 189 -9 B . 111112222221101012 190 -10 B . 111110222221101012 191 -9 D . 111110222221101012 192 -8 B . 111111222221101012 193 -9 B . 111111022221101012 194 -8 D . 111111022221101012 195 -7 B . 111111122221101012 196 -8 B . 111111102221101012 197 -7 D . 111111102221101012 198 -6 B . 111111112221101012 199 -7 B . 111111110221101012 200 -6 D . 111111110221101012 After 200 steps (201 lines): state = D. Produced 15 nonzeros. Tape index -6, scanned [-14 .. 3].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 9 | 6 | 3 | 0 | 14 | ||
B | 87 | 3 | 46 | 38 | 1 | 6 | 5 |
C | 23 | 4 | 17 | 2 | 3 | 2 | 13 |
D | 81 | 43 | 36 | 2 | 7 | 23 | 9 |