3-state 4-symbol #f (T.J. & S. Ligocki)

Comment: This TM produces >1.7x10^1301 nonzeros in >8.4x10^2601 steps.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LA 3LA 3RC 1 right B 1 left A 3 left A 3 right C
B 2LC 2LB 1RB 1RA 2 left C 2 left B 1 right B 1 right A
C 2LA 3LC 1RH 1LB 2 left A 3 left C 1 right H 1 left B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <C 2
    3        3      -1  <C 3 2
    4        4      -2  <A 2 3 2
    5        5      -1  1 B> 2 3 2
    6        6       0  12 B> 3 2
    7        7       1  13 A> 2
    8        8       0  13 <A 3
    9       11      -3  <A 13 3
   10       12      -2  1 B> 13 3
   11       13      -3  1 <B 2 12 3
   12       14      -4  <B 22 12 3
   13       15      -5  <C 23 12 3
   14       16      -6  <A 24 12 3
   15       17      -5  1 B> 24 12 3
   16       21      -1  15 B> 12 3
   17       22      -2  15 <B 2 1 3
   18       27      -7  <B 26 1 3
   19       28      -8  <C 27 1 3
   20       29      -9  <A 28 1 3
   21       30      -8  1 B> 28 1 3
   22       38       0  19 B> 1 3
   23       39      -1  19 <B 2 3
   24       48     -10  <B 210 3
   25       49     -11  <C 211 3
   26       50     -12  <A 212 3
   27       51     -11  1 B> 212 3
   28       63       1  113 B> 3
   29       64       2  114 A>
   30       65       3  115 B>
   31       66       2  115 <C 2
   32       81     -13  <C 315 2
   33       82     -14  <A 2 315 2
   34       83     -13  1 B> 2 315 2
   35       84     -12  12 B> 315 2
   36       85     -11  13 A> 314 2
   37       86     -10  13 3 C> 313 2
   38       87     -11  13 3 <B 1 312 2
   39       88     -10  14 A> 1 312 2
   40       89     -11  14 <A 1 312 2
   41       93     -15  <A 15 312 2
   42       94     -14  1 B> 15 312 2
   43       95     -15  1 <B 2 14 312 2
   44       96     -16  <B 22 14 312 2
   45       97     -17  <C 23 14 312 2
   46       98     -18  <A 24 14 312 2
   47       99     -17  1 B> 24 14 312 2
   48      103     -13  15 B> 14 312 2
   49      104     -14  15 <B 2 13 312 2
   50      109     -19  <B 26 13 312 2
   51      110     -20  <C 27 13 312 2
   52      111     -21  <A 28 13 312 2
   53      112     -20  1 B> 28 13 312 2
   54      120     -12  19 B> 13 312 2
   55      121     -13  19 <B 2 12 312 2
   56      130     -22  <B 210 12 312 2
   57      131     -23  <C 211 12 312 2
   58      132     -24  <A 212 12 312 2
   59      133     -23  1 B> 212 12 312 2
   60      145     -11  113 B> 12 312 2
   61      146     -12  113 <B 2 1 312 2
   62      159     -25  <B 214 1 312 2
   63      160     -26  <C 215 1 312 2
   64      161     -27  <A 216 1 312 2
   65      162     -26  1 B> 216 1 312 2
   66      178     -10  117 B> 1 312 2
   67      179     -11  117 <B 2 312 2
   68      196     -28  <B 218 312 2
   69      197     -29  <C 219 312 2
   70      198     -30  <A 220 312 2
   71      199     -29  1 B> 220 312 2
   72      219      -9  121 B> 312 2
   73      220      -8  122 A> 311 2
   74      221      -7  122 3 C> 310 2
   75      222      -8  122 3 <B 1 39 2
   76      223      -7  123 A> 1 39 2
   77      224      -8  123 <A 1 39 2
   78      247     -31  <A 124 39 2
   79      248     -30  1 B> 124 39 2
   80      249     -31  1 <B 2 123 39 2
   81      250     -32  <B 22 123 39 2
   82      251     -33  <C 23 123 39 2
   83      252     -34  <A 24 123 39 2
   84      253     -33  1 B> 24 123 39 2
   85      257     -29  15 B> 123 39 2
   86      258     -30  15 <B 2 122 39 2
   87      263     -35  <B 26 122 39 2
   88      264     -36  <C 27 122 39 2
   89      265     -37  <A 28 122 39 2
   90      266     -36  1 B> 28 122 39 2
   91      274     -28  19 B> 122 39 2
   92      275     -29  19 <B 2 121 39 2
   93      284     -38  <B 210 121 39 2
   94      285     -39  <C 211 121 39 2
   95      286     -40  <A 212 121 39 2
   96      287     -39  1 B> 212 121 39 2
   97      299     -27  113 B> 121 39 2
   98      300     -28  113 <B 2 120 39 2
   99      313     -41  <B 214 120 39 2
  100      314     -42  <C 215 120 39 2
  101      315     -43  <A 216 120 39 2
  102      316     -42  1 B> 216 120 39 2
  103      332     -26  117 B> 120 39 2
  104      333     -27  117 <B 2 119 39 2
  105      350     -44  <B 218 119 39 2
  106      351     -45  <C 219 119 39 2
  107      352     -46  <A 220 119 39 2
  108      353     -45  1 B> 220 119 39 2
  109      373     -25  121 B> 119 39 2
  110      374     -26  121 <B 2 118 39 2
  111      395     -47  <B 222 118 39 2
  112      396     -48  <C 223 118 39 2
  113      397     -49  <A 224 118 39 2
  114      398     -48  1 B> 224 118 39 2
  115      422     -24  125 B> 118 39 2
  116      423     -25  125 <B 2 117 39 2
  117      448     -50  <B 226 117 39 2
  118      449     -51  <C 227 117 39 2
  119      450     -52  <A 228 117 39 2
  120      451     -51  1 B> 228 117 39 2
  121      479     -23  129 B> 117 39 2
  122      480     -24  129 <B 2 116 39 2
  123      509     -53  <B 230 116 39 2
  124      510     -54  <C 231 116 39 2
  125      511     -55  <A 232 116 39 2
  126      512     -54  1 B> 232 116 39 2
  127      544     -22  133 B> 116 39 2
  128      545     -23  133 <B 2 115 39 2
  129      578     -56  <B 234 115 39 2
  130      579     -57  <C 235 115 39 2
  131      580     -58  <A 236 115 39 2
  132      581     -57  1 B> 236 115 39 2
  133      617     -21  137 B> 115 39 2
  134      618     -22  137 <B 2 114 39 2
  135      655     -59  <B 238 114 39 2
  136      656     -60  <C 239 114 39 2
  137      657     -61  <A 240 114 39 2
  138      658     -60  1 B> 240 114 39 2
  139      698     -20  141 B> 114 39 2
  140      699     -21  141 <B 2 113 39 2
  141      740     -62  <B 242 113 39 2
  142      741     -63  <C 243 113 39 2
  143      742     -64  <A 244 113 39 2
  144      743     -63  1 B> 244 113 39 2
  145      787     -19  145 B> 113 39 2
  146      788     -20  145 <B 2 112 39 2
  147      833     -65  <B 246 112 39 2
  148      834     -66  <C 247 112 39 2
  149      835     -67  <A 248 112 39 2
  150      836     -66  1 B> 248 112 39 2
  151      884     -18  149 B> 112 39 2
  152      885     -19  149 <B 2 111 39 2
  153      934     -68  <B 250 111 39 2
  154      935     -69  <C 251 111 39 2
  155      936     -70  <A 252 111 39 2
  156      937     -69  1 B> 252 111 39 2
  157      989     -17  153 B> 111 39 2
  158      990     -18  153 <B 2 110 39 2
  159     1043     -71  <B 254 110 39 2
  160     1044     -72  <C 255 110 39 2
  161     1045     -73  <A 256 110 39 2
  162     1046     -72  1 B> 256 110 39 2
  163     1102     -16  157 B> 110 39 2
  164     1103     -17  157 <B 2 19 39 2
  165     1160     -74  <B 258 19 39 2
  166     1161     -75  <C 259 19 39 2
  167     1162     -76  <A 260 19 39 2
  168     1163     -75  1 B> 260 19 39 2
  169     1223     -15  161 B> 19 39 2
  170     1224     -16  161 <B 2 18 39 2
  171     1285     -77  <B 262 18 39 2
  172     1286     -78  <C 263 18 39 2
  173     1287     -79  <A 264 18 39 2
  174     1288     -78  1 B> 264 18 39 2
  175     1352     -14  165 B> 18 39 2
  176     1353     -15  165 <B 2 17 39 2
  177     1418     -80  <B 266 17 39 2
  178     1419     -81  <C 267 17 39 2
  179     1420     -82  <A 268 17 39 2
  180     1421     -81  1 B> 268 17 39 2
  181     1489     -13  169 B> 17 39 2
  182     1490     -14  169 <B 2 16 39 2
  183     1559     -83  <B 270 16 39 2
  184     1560     -84  <C 271 16 39 2
  185     1561     -85  <A 272 16 39 2
  186     1562     -84  1 B> 272 16 39 2
  187     1634     -12  173 B> 16 39 2
  188     1635     -13  173 <B 2 15 39 2
  189     1708     -86  <B 274 15 39 2
  190     1709     -87  <C 275 15 39 2
  191     1710     -88  <A 276 15 39 2
  192     1711     -87  1 B> 276 15 39 2
  193     1787     -11  177 B> 15 39 2
  194     1788     -12  177 <B 2 14 39 2
  195     1865     -89  <B 278 14 39 2
  196     1866     -90  <C 279 14 39 2
  197     1867     -91  <A 280 14 39 2
  198     1868     -90  1 B> 280 14 39 2
  199     1948     -10  181 B> 14 39 2
  200     1949     -11  181 <B 2 13 39 2

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1949
Tape index:  -11
nonzeros:    95
log10(nonzeros):    1.978
log10(steps   ):    3.290

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 3-state 4-symbol #f (T.J. & S. Ligocki)
    : >1.7x10^1301 >8.4x10^2601
    5T  1RB 1LA 3LA 3RC  2LC 2LB 1RB 1RA  2LA 3LC 1RH 1LB
    L 50
    M	201
    pref	sim
    machv Lig34_f  	just simple
    machv Lig34_f-r	with repetitions reduced
    machv Lig34_f-1	with tape symbol exponents
    machv Lig34_f-m	as 1-macro machine
    machv Lig34_f-a	as 1-macro machine with pure additive config-TRs
    iam	Lig34_f-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:50 CEST 2010
    edate	Tue Jul  6 22:13:51 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:50 CEST 2010
Ready: Tue Jul 6 22:13:51 CEST 2010