3-state 4-symbol #a (T.J. & S. Ligocki)

Comment: This TM produces 17323 nonzeros in 262,759,288 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LC 0LC 0RA 1 right B 2 left C 0 left C 0 right A
B 3LC 2RC 1LB 0RC 3 left C 2 right C 1 left B 0 right C
C 1RA 0LB 1RH 0RB 1 right A 0 left B 1 right H 0 right B
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 6-bck-macro machine.
The same TM as 6-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 C . . . . . 13
     3   -1 B . . . . .003
     4   -2 C . . . . 0303
     5   -1 A . . . . 1303
     6    0 A . . . . 1003
     7    1 B . . . . 1013
     8    2 C . . . . 10100
     9    3 A . . . . 101010
    10    4 B . . . . 1010110
    11    3 C . . . . 1010113
    12    2 B . . . . 1010103
    13    3 C . . . . 1010203
    14    4 A . . . . 1010213
    15    5 A . . . . 10102100
    16    6 B . . . . 101021010
    17    5 C . . . . 101021013
    18    4 B . . . . 101021003
    19    3 C . . . . 101021303
    20    2 B . . . . 101020303
    21    1 B . . . . 101010303
    22    0 C . . . . 101310303
    23   -1 B . . . . 100310303
    24   -2 C . . . . 130310303
    25   -3 B . . . .0030310303
    26   -4 C . . . 03030310303
    27   -3 A . . . 13030310303
    28   -2 A . . . 10030310303
    29   -1 B . . . 10130310303
    30    0 C . . . 10100310303
    31    1 A . . . 10101310303
    32    2 A . . . 10101010303
    33    1 C . . . 10101020303
    34    2 A . . . 10101120303
    35    1 C . . . 10101100303
    36    0 B . . . 10101000303
    37    1 C . . . 10102000303
    38    2 A . . . 10102100303
    39    3 B . . . 10102110303
    40    2 C . . . 10102113303
    41    1 B . . . 10102103303
    42    2 C . . . 10102203303
    43    3 A . . . 10102213303
+   45    5 A . . . 10102210003  by A/3 * 2
    46    6 B . . . 10102210013
    47    7 C . . . 101022100100
    48    8 A . . . 1010221001010
    49    9 B . . . 10102210010110
    50    8 C . . . 10102210010113
    51    7 B . . . 10102210010103
    52    8 C . . . 10102210010203
    53    9 A . . . 10102210010213
    54   10 A . . . 101022100102100
    55   11 B . . . 1010221001021010
    56   10 C . . . 1010221001021013
    57    9 B . . . 1010221001021003
    58    8 C . . . 1010221001021303
    59    7 B . . . 1010221001020303
    60    6 B . . . 1010221001010303
    61    5 C . . . 1010221001310303
    62    4 B . . . 1010221000310303
    63    3 C . . . 1010221030310303
    64    4 A . . . 1010221130310303
    65    5 A . . . 1010221100310303
    66    6 B . . . 1010221101310303
    67    7 C . . . 1010221101010303
    68    6 B . . . 1010221101000303
    69    5 C . . . 1010221101300303
    70    4 B . . . 1010221100300303
    71    3 C . . . 1010221130300303
    72    2 B . . . 1010221030300303
    73    3 C . . . 1010222030300303
    74    4 A . . . 1010222130300303
    75    5 A . . . 1010222100300303
    76    6 B . . . 1010222101300303
    77    7 C . . . 1010222101000303
    78    8 A . . . 1010222101010303
    79    9 B . . . 1010222101011303
    80   10 C . . . 1010222101011003
    81   11 A . . . 1010222101011013
    82   12 A . . . 10102221010110100
    83   13 B . . . 101022210101101010
    84   12 C . . . 101022210101101013
    85   11 B . . . 101022210101101003
    86   10 C . . . 101022210101101303
    87    9 B . . . 101022210101100303
    88    8 C . . . 101022210101130303
    89    7 B . . . 101022210101030303
    90    8 C . . . 101022210102030303
    91    9 A . . . 101022210102130303
    92   10 A . . . 101022210102100303
    93   11 B . . . 101022210102101303
    94   12 C . . . 101022210102101003
    95   13 A . . . 101022210102101013
    96   14 A . . . 1010222101021010100
    97   15 B . . . 10102221010210101010
    98   14 C . . . 10102221010210101013
    99   13 B . . . 10102221010210101003
   100   12 C . . . 10102221010210101303
   101   11 B . . . 10102221010210100303
   102   10 C . . . 10102221010210130303
   103    9 B . . . 10102221010210030303
   104    8 C . . . 10102221010213030303
   105    7 B . . . 10102221010203030303
   106    6 B . . . 10102221010103030303
   107    5 C . . . 10102221013103030303
   108    4 B . . . 10102221003103030303
   109    3 C . . . 10102221303103030303
   110    2 B . . . 10102220303103030303
+  113   -1 B . . . 10101110303103030303   by B/2 * 3
   114   -2 C . . . 10131110303103030303
   115   -3 B . . . 10031110303103030303
   116   -4 C . . . 13031110303103030303
   117   -5 B . . .003031110303103030303
   118   -6 C . . 0303031110303103030303
   119   -5 A . . 1303031110303103030303
   120   -4 A . . 1003031110303103030303
   121   -3 B . . 1013031110303103030303
   122   -2 C . . 1010031110303103030303
   123   -1 A . . 1010131110303103030303
   124    0 A . . 1010101110303103030303
   125   -1 C . . 1010102110303103030303
   126    0 A . . 1010112110303103030303
   127   -1 C . . 1010110110303103030303
   128   -2 B . . 1010100110303103030303
   129   -1 C . . 1010200110303103030303
   130    0 A . . 1010210110303103030303
   131    1 B . . 1010211110303103030303
   132    2 C . . 1010211210303103030303
   133    1 B . . 1010211200303103030303
   134    0 B . . 1010211100303103030303
   135    1 C . . 1010212100303103030303
   136    0 B . . 1010212000303103030303
   137   -1 B . . 1010211000303103030303
   138    0 C . . 1010221000303103030303
   139   -1 B . . 1010220000303103030303
+  141   -3 B . . 1010110000303103030303   by B/2 * 2
   142   -4 C . . 1013110000303103030303
   143   -5 B . . 1003110000303103030303
   144   -6 C . . 1303110000303103030303
   145   -7 B . .00303110000303103030303
   146   -8 C . 030303110000303103030303
   147   -7 A . 130303110000303103030303
   148   -6 A . 100303110000303103030303
   149   -5 B . 101303110000303103030303
   150   -4 C . 101003110000303103030303
   151   -3 A . 101013110000303103030303
   152   -2 A . 101010110000303103030303
   153   -3 C . 101010210000303103030303
   154   -2 A . 101011210000303103030303
   155   -3 C . 101011010000303103030303
   156   -4 B . 101010010000303103030303
   157   -3 C . 101020010000303103030303
   158   -2 A . 101021010000303103030303
   159   -1 B . 101021110000303103030303
   160    0 C . 101021120000303103030303
   161    1 A . 101021121000303103030303
   162    2 B . 101021121100303103030303
   163    1 C . 101021121130303103030303
   164    0 B . 101021121030303103030303
   165    1 C . 101021122030303103030303
   166    2 A . 101021122130303103030303
   167    3 A . 101021122100303103030303
   168    4 B . 101021122101303103030303
   169    5 C . 101021122101003103030303
   170    6 A . 101021122101013103030303
   171    7 A . 101021122101010103030303
   172    6 C . 101021122101010203030303
   173    7 A . 101021122101011203030303
   174    6 C . 101021122101011003030303
   175    5 B . 101021122101010003030303
   176    6 C . 101021122101020003030303
   177    7 A . 101021122101021003030303
   178    8 B . 101021122101021103030303
   179    7 C . 101021122101021133030303
   180    6 B . 101021122101021033030303
   181    7 C . 101021122101022033030303
   182    8 A . 101021122101022133030303
+  184   10 A . 101021122101022100030303   by A/3 * 2
   185   11 B . 101021122101022100130303
   186   12 C . 101021122101022100100303
   187   13 A . 101021122101022100101303
   188   14 A . 101021122101022100101003
   189   15 B . 101021122101022100101013
   190   16 C . 1010211221010221001010100
   191   17 A . 10102112210102210010101010
   192   18 B . 101021122101022100101010110
   193   17 C . 101021122101022100101010113
   194   16 B . 101021122101022100101010103
   195   17 C . 101021122101022100101010203
   196   18 A . 101021122101022100101010213
   197   19 A . 1010211221010221001010102100
   198   20 B . 10102112210102210010101021010
   199   19 C . 10102112210102210010101021013
   200   18 B . 10102112210102210010101021003
   201   17 C . 10102112210102210010101021303
   202   16 B . 10102112210102210010101020303
   203   15 B . 10102112210102210010101010303
   204   14 C . 10102112210102210010101310303
   205   13 B . 10102112210102210010100310303

After 205 steps (201 lines): state = B.
Produced     18 nonzeros.
Tape index 13, scanned [-8 .. 20].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 56 26 4 4 22 0 32 34 5
B 76 37 16 11 12 1 12 20 7
C 73 33 40     4 2    
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as 6-bck-macro machine.
The same TM as 6-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:30 CEST 2010