Comment: This TM produces >1.9x10^27 nonzeros in >2.3x10^54 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 0RB | 3LA | 5LA | 1RH | 4LB | 1 | right | B | 0 | right | B | 3 | left | A | 5 | left | A | 1 | right | H | 4 | left | B |
B | 1LA | 2RB | 3LA | 4LB | 3RB | 3RA | 1 | left | A | 2 | right | B | 3 | left | A | 4 | left | B | 3 | right | B | 3 | right | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 1 3 1 B> 1 4 2 2 B> 5 1 2 <A 1 6 0 <A 3 1 7 1 1 B> 3 1 8 0 1 <B 4 1 9 1 2 B> 4 1 10 2 2 3 B> 1 11 3 2 3 2 B> 12 2 2 3 2 <A 1 13 1 2 3 <A 3 1 14 0 2 <A 5 3 1 15 -1 <A 3 5 3 1 16 0 1 B> 3 5 3 1 17 -1 1 <B 4 5 3 1 18 0 2 B> 4 5 3 1 19 1 2 3 B> 5 3 1 20 2 2 3 3 A> 3 1 21 1 2 3 3 <A 5 1 + 23 -1 2 <A 53 1 24 -2 <A 3 53 1 25 -1 1 B> 3 53 1 26 -2 1 <B 4 53 1 27 -1 2 B> 4 53 1 28 0 2 3 B> 53 1 29 1 2 3 3 A> 5 5 1 30 0 2 3 3 <B 4 5 1 + 32 -2 2 <B 43 5 1 33 -3 <A 3 43 5 1 34 -2 1 B> 3 43 5 1 35 -3 1 <B 44 5 1 36 -2 2 B> 44 5 1 + 40 2 2 34 B> 5 1 41 3 2 35 A> 1 42 4 2 35 0 B> 43 3 2 35 0 <A 1 44 4 2 35 1 B> 1 45 5 2 35 1 2 B> 46 4 2 35 1 2 <A 1 47 3 2 35 1 <A 3 1 48 4 2 35 0 B> 3 1 49 3 2 35 0 <B 4 1 50 2 2 35 <A 1 4 1 + 55 -3 2 <A 55 1 4 1 56 -4 <A 3 55 1 4 1 57 -3 1 B> 3 55 1 4 1 58 -4 1 <B 4 55 1 4 1 59 -3 2 B> 4 55 1 4 1 60 -2 2 3 B> 55 1 4 1 61 -1 2 3 3 A> 54 1 4 1 62 -2 2 3 3 <B 4 53 1 4 1 + 64 -4 2 <B 43 53 1 4 1 65 -5 <A 3 43 53 1 4 1 66 -4 1 B> 3 43 53 1 4 1 67 -5 1 <B 44 53 1 4 1 68 -4 2 B> 44 53 1 4 1 + 72 0 2 34 B> 53 1 4 1 73 1 2 35 A> 5 5 1 4 1 74 0 2 35 <B 4 5 1 4 1 + 79 -5 2 <B 46 5 1 4 1 80 -6 <A 3 46 5 1 4 1 81 -5 1 B> 3 46 5 1 4 1 82 -6 1 <B 47 5 1 4 1 83 -5 2 B> 47 5 1 4 1 + 90 2 2 37 B> 5 1 4 1 91 3 2 38 A> 1 4 1 92 4 2 38 0 B> 4 1 93 5 2 38 0 3 B> 1 94 6 2 38 0 3 2 B> 95 5 2 38 0 3 2 <A 1 96 4 2 38 0 3 <A 3 1 97 3 2 38 0 <A 5 3 1 98 4 2 38 1 B> 5 3 1 99 5 2 38 1 3 A> 3 1 100 4 2 38 1 3 <A 5 1 101 3 2 38 1 <A 5 5 1 102 4 2 38 0 B> 5 5 1 103 5 2 38 0 3 A> 5 1 104 4 2 38 0 3 <B 4 1 105 3 2 38 0 <B 4 4 1 106 2 2 38 <A 1 4 4 1 + 114 -6 2 <A 58 1 4 4 1 115 -7 <A 3 58 1 4 4 1 116 -6 1 B> 3 58 1 4 4 1 117 -7 1 <B 4 58 1 4 4 1 118 -6 2 B> 4 58 1 4 4 1 119 -5 2 3 B> 58 1 4 4 1 120 -4 2 3 3 A> 57 1 4 4 1 121 -5 2 3 3 <B 4 56 1 4 4 1 + 123 -7 2 <B 43 56 1 4 4 1 124 -8 <A 3 43 56 1 4 4 1 125 -7 1 B> 3 43 56 1 4 4 1 126 -8 1 <B 44 56 1 4 4 1 127 -7 2 B> 44 56 1 4 4 1 + 131 -3 2 34 B> 56 1 4 4 1 132 -2 2 35 A> 55 1 4 4 1 133 -3 2 35 <B 4 54 1 4 4 1 + 138 -8 2 <B 46 54 1 4 4 1 139 -9 <A 3 46 54 1 4 4 1 140 -8 1 B> 3 46 54 1 4 4 1 141 -9 1 <B 47 54 1 4 4 1 142 -8 2 B> 47 54 1 4 4 1 + 149 -1 2 37 B> 54 1 4 4 1 150 0 2 38 A> 53 1 4 4 1 151 -1 2 38 <B 4 5 5 1 4 4 1 + 159 -9 2 <B 49 5 5 1 4 4 1 160 -10 <A 3 49 5 5 1 4 4 1 161 -9 1 B> 3 49 5 5 1 4 4 1 162 -10 1 <B 410 5 5 1 4 4 1 163 -9 2 B> 410 5 5 1 4 4 1 + 173 1 2 310 B> 5 5 1 4 4 1 174 2 2 311 A> 5 1 4 4 1 175 1 2 311 <B 4 1 4 4 1 + 186 -10 2 <B 412 1 4 4 1 187 -11 <A 3 412 1 4 4 1 188 -10 1 B> 3 412 1 4 4 1 189 -11 1 <B 413 1 4 4 1 190 -10 2 B> 413 1 4 4 1 + 203 3 2 313 B> 1 4 4 1 204 4 2 313 2 B> 4 4 1 + 206 6 2 313 2 3 3 B> 1 207 7 2 313 2 3 3 2 B> 208 6 2 313 2 3 3 2 <A 1 209 5 2 313 2 3 3 <A 3 1 + 211 3 2 313 2 <A 5 5 3 1 212 2 2 313 <A 3 5 5 3 1 + 225 -11 2 <A 513 3 5 5 3 1 226 -12 <A 3 513 3 5 5 3 1 227 -11 1 B> 3 513 3 5 5 3 1 228 -12 1 <B 4 513 3 5 5 3 1 229 -11 2 B> 4 513 3 5 5 3 1 230 -10 2 3 B> 513 3 5 5 3 1 231 -9 2 3 3 A> 512 3 5 5 3 1 232 -10 2 3 3 <B 4 511 3 5 5 3 1 + 234 -12 2 <B 43 511 3 5 5 3 1 235 -13 <A 3 43 511 3 5 5 3 1 236 -12 1 B> 3 43 511 3 5 5 3 1 237 -13 1 <B 44 511 3 5 5 3 1 238 -12 2 B> 44 511 3 5 5 3 1 + 242 -8 2 34 B> 511 3 5 5 3 1 243 -7 2 35 A> 510 3 5 5 3 1 244 -8 2 35 <B 4 59 3 5 5 3 1 + 249 -13 2 <B 46 59 3 5 5 3 1 250 -14 <A 3 46 59 3 5 5 3 1 251 -13 1 B> 3 46 59 3 5 5 3 1 252 -14 1 <B 47 59 3 5 5 3 1 253 -13 2 B> 47 59 3 5 5 3 1 + 260 -6 2 37 B> 59 3 5 5 3 1 261 -5 2 38 A> 58 3 5 5 3 1 262 -6 2 38 <B 4 57 3 5 5 3 1 + 270 -14 2 <B 49 57 3 5 5 3 1 271 -15 <A 3 49 57 3 5 5 3 1 272 -14 1 B> 3 49 57 3 5 5 3 1 273 -15 1 <B 410 57 3 5 5 3 1 274 -14 2 B> 410 57 3 5 5 3 1 + 284 -4 2 310 B> 57 3 5 5 3 1 285 -3 2 311 A> 56 3 5 5 3 1 286 -4 2 311 <B 4 55 3 5 5 3 1 + 297 -15 2 <B 412 55 3 5 5 3 1 298 -16 <A 3 412 55 3 5 5 3 1 299 -15 1 B> 3 412 55 3 5 5 3 1 300 -16 1 <B 413 55 3 5 5 3 1 301 -15 2 B> 413 55 3 5 5 3 1 + 314 -2 2 313 B> 55 3 5 5 3 1 315 -1 2 314 A> 54 3 5 5 3 1 316 -2 2 314 <B 4 53 3 5 5 3 1 + 330 -16 2 <B 415 53 3 5 5 3 1 331 -17 <A 3 415 53 3 5 5 3 1 332 -16 1 B> 3 415 53 3 5 5 3 1 333 -17 1 <B 416 53 3 5 5 3 1 334 -16 2 B> 416 53 3 5 5 3 1 + 350 0 2 316 B> 53 3 5 5 3 1 351 1 2 317 A> 5 5 3 5 5 3 1 352 0 2 317 <B 4 5 3 5 5 3 1 + 369 -17 2 <B 418 5 3 5 5 3 1 370 -18 <A 3 418 5 3 5 5 3 1 371 -17 1 B> 3 418 5 3 5 5 3 1 372 -18 1 <B 419 5 3 5 5 3 1 373 -17 2 B> 419 5 3 5 5 3 1 + 392 2 2 319 B> 5 3 5 5 3 1 393 3 2 320 A> 3 5 5 3 1 394 2 2 320 <A 53 3 1 + 414 -18 2 <A 523 3 1 415 -19 <A 3 523 3 1 416 -18 1 B> 3 523 3 1 417 -19 1 <B 4 523 3 1 418 -18 2 B> 4 523 3 1 419 -17 2 3 B> 523 3 1 420 -16 2 3 3 A> 522 3 1 421 -17 2 3 3 <B 4 521 3 1 + 423 -19 2 <B 43 521 3 1 424 -20 <A 3 43 521 3 1 425 -19 1 B> 3 43 521 3 1 426 -20 1 <B 44 521 3 1 427 -19 2 B> 44 521 3 1 + 431 -15 2 34 B> 521 3 1 432 -14 2 35 A> 520 3 1 433 -15 2 35 <B 4 519 3 1 After 433 steps (201 lines): state = B. Produced 28 nonzeros. Tape index -15, scanned [-20 .. 7].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 113 | 24 | 5 | 12 | 56 | 16 | 0 | 2 | 5 | 13 | 29 | ||
B | 320 | 9 | 27 | 14 | 117 | 132 | 21 | 1 | 3 | 32 | 7 | 9 | 19 |