Comment: This TM produces >1.9x10^27 nonzeros in >2.3x10^54 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 1RB | 0RB | 3LA | 5LA | 1RH | 4LB | 1 | right | B | 0 | right | B | 3 | left | A | 5 | left | A | 1 | right | H | 4 | left | B |
| B | 1LA | 2RB | 3LA | 4LB | 3RB | 3RA | 1 | left | A | 2 | right | B | 3 | left | A | 4 | left | B | 3 | right | B | 3 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 1
3 1 B> 1
4 2 2 B>
5 1 2 <A 1
6 0 <A 3 1
7 1 1 B> 3 1
8 0 1 <B 4 1
9 1 2 B> 4 1
10 2 2 3 B> 1
11 3 2 3 2 B>
12 2 2 3 2 <A 1
13 1 2 3 <A 3 1
14 0 2 <A 5 3 1
15 -1 <A 3 5 3 1
16 0 1 B> 3 5 3 1
17 -1 1 <B 4 5 3 1
18 0 2 B> 4 5 3 1
19 1 2 3 B> 5 3 1
20 2 2 3 3 A> 3 1
21 1 2 3 3 <A 5 1
+ 23 -1 2 <A 53 1
24 -2 <A 3 53 1
25 -1 1 B> 3 53 1
26 -2 1 <B 4 53 1
27 -1 2 B> 4 53 1
28 0 2 3 B> 53 1
29 1 2 3 3 A> 5 5 1
30 0 2 3 3 <B 4 5 1
+ 32 -2 2 <B 43 5 1
33 -3 <A 3 43 5 1
34 -2 1 B> 3 43 5 1
35 -3 1 <B 44 5 1
36 -2 2 B> 44 5 1
+ 40 2 2 34 B> 5 1
41 3 2 35 A> 1
42 4 2 35 0 B>
43 3 2 35 0 <A 1
44 4 2 35 1 B> 1
45 5 2 35 1 2 B>
46 4 2 35 1 2 <A 1
47 3 2 35 1 <A 3 1
48 4 2 35 0 B> 3 1
49 3 2 35 0 <B 4 1
50 2 2 35 <A 1 4 1
+ 55 -3 2 <A 55 1 4 1
56 -4 <A 3 55 1 4 1
57 -3 1 B> 3 55 1 4 1
58 -4 1 <B 4 55 1 4 1
59 -3 2 B> 4 55 1 4 1
60 -2 2 3 B> 55 1 4 1
61 -1 2 3 3 A> 54 1 4 1
62 -2 2 3 3 <B 4 53 1 4 1
+ 64 -4 2 <B 43 53 1 4 1
65 -5 <A 3 43 53 1 4 1
66 -4 1 B> 3 43 53 1 4 1
67 -5 1 <B 44 53 1 4 1
68 -4 2 B> 44 53 1 4 1
+ 72 0 2 34 B> 53 1 4 1
73 1 2 35 A> 5 5 1 4 1
74 0 2 35 <B 4 5 1 4 1
+ 79 -5 2 <B 46 5 1 4 1
80 -6 <A 3 46 5 1 4 1
81 -5 1 B> 3 46 5 1 4 1
82 -6 1 <B 47 5 1 4 1
83 -5 2 B> 47 5 1 4 1
+ 90 2 2 37 B> 5 1 4 1
91 3 2 38 A> 1 4 1
92 4 2 38 0 B> 4 1
93 5 2 38 0 3 B> 1
94 6 2 38 0 3 2 B>
95 5 2 38 0 3 2 <A 1
96 4 2 38 0 3 <A 3 1
97 3 2 38 0 <A 5 3 1
98 4 2 38 1 B> 5 3 1
99 5 2 38 1 3 A> 3 1
100 4 2 38 1 3 <A 5 1
101 3 2 38 1 <A 5 5 1
102 4 2 38 0 B> 5 5 1
103 5 2 38 0 3 A> 5 1
104 4 2 38 0 3 <B 4 1
105 3 2 38 0 <B 4 4 1
106 2 2 38 <A 1 4 4 1
+ 114 -6 2 <A 58 1 4 4 1
115 -7 <A 3 58 1 4 4 1
116 -6 1 B> 3 58 1 4 4 1
117 -7 1 <B 4 58 1 4 4 1
118 -6 2 B> 4 58 1 4 4 1
119 -5 2 3 B> 58 1 4 4 1
120 -4 2 3 3 A> 57 1 4 4 1
121 -5 2 3 3 <B 4 56 1 4 4 1
+ 123 -7 2 <B 43 56 1 4 4 1
124 -8 <A 3 43 56 1 4 4 1
125 -7 1 B> 3 43 56 1 4 4 1
126 -8 1 <B 44 56 1 4 4 1
127 -7 2 B> 44 56 1 4 4 1
+ 131 -3 2 34 B> 56 1 4 4 1
132 -2 2 35 A> 55 1 4 4 1
133 -3 2 35 <B 4 54 1 4 4 1
+ 138 -8 2 <B 46 54 1 4 4 1
139 -9 <A 3 46 54 1 4 4 1
140 -8 1 B> 3 46 54 1 4 4 1
141 -9 1 <B 47 54 1 4 4 1
142 -8 2 B> 47 54 1 4 4 1
+ 149 -1 2 37 B> 54 1 4 4 1
150 0 2 38 A> 53 1 4 4 1
151 -1 2 38 <B 4 5 5 1 4 4 1
+ 159 -9 2 <B 49 5 5 1 4 4 1
160 -10 <A 3 49 5 5 1 4 4 1
161 -9 1 B> 3 49 5 5 1 4 4 1
162 -10 1 <B 410 5 5 1 4 4 1
163 -9 2 B> 410 5 5 1 4 4 1
+ 173 1 2 310 B> 5 5 1 4 4 1
174 2 2 311 A> 5 1 4 4 1
175 1 2 311 <B 4 1 4 4 1
+ 186 -10 2 <B 412 1 4 4 1
187 -11 <A 3 412 1 4 4 1
188 -10 1 B> 3 412 1 4 4 1
189 -11 1 <B 413 1 4 4 1
190 -10 2 B> 413 1 4 4 1
+ 203 3 2 313 B> 1 4 4 1
204 4 2 313 2 B> 4 4 1
+ 206 6 2 313 2 3 3 B> 1
207 7 2 313 2 3 3 2 B>
208 6 2 313 2 3 3 2 <A 1
209 5 2 313 2 3 3 <A 3 1
+ 211 3 2 313 2 <A 5 5 3 1
212 2 2 313 <A 3 5 5 3 1
+ 225 -11 2 <A 513 3 5 5 3 1
226 -12 <A 3 513 3 5 5 3 1
227 -11 1 B> 3 513 3 5 5 3 1
228 -12 1 <B 4 513 3 5 5 3 1
229 -11 2 B> 4 513 3 5 5 3 1
230 -10 2 3 B> 513 3 5 5 3 1
231 -9 2 3 3 A> 512 3 5 5 3 1
232 -10 2 3 3 <B 4 511 3 5 5 3 1
+ 234 -12 2 <B 43 511 3 5 5 3 1
235 -13 <A 3 43 511 3 5 5 3 1
236 -12 1 B> 3 43 511 3 5 5 3 1
237 -13 1 <B 44 511 3 5 5 3 1
238 -12 2 B> 44 511 3 5 5 3 1
+ 242 -8 2 34 B> 511 3 5 5 3 1
243 -7 2 35 A> 510 3 5 5 3 1
244 -8 2 35 <B 4 59 3 5 5 3 1
+ 249 -13 2 <B 46 59 3 5 5 3 1
250 -14 <A 3 46 59 3 5 5 3 1
251 -13 1 B> 3 46 59 3 5 5 3 1
252 -14 1 <B 47 59 3 5 5 3 1
253 -13 2 B> 47 59 3 5 5 3 1
+ 260 -6 2 37 B> 59 3 5 5 3 1
261 -5 2 38 A> 58 3 5 5 3 1
262 -6 2 38 <B 4 57 3 5 5 3 1
+ 270 -14 2 <B 49 57 3 5 5 3 1
271 -15 <A 3 49 57 3 5 5 3 1
272 -14 1 B> 3 49 57 3 5 5 3 1
273 -15 1 <B 410 57 3 5 5 3 1
274 -14 2 B> 410 57 3 5 5 3 1
+ 284 -4 2 310 B> 57 3 5 5 3 1
285 -3 2 311 A> 56 3 5 5 3 1
286 -4 2 311 <B 4 55 3 5 5 3 1
+ 297 -15 2 <B 412 55 3 5 5 3 1
298 -16 <A 3 412 55 3 5 5 3 1
299 -15 1 B> 3 412 55 3 5 5 3 1
300 -16 1 <B 413 55 3 5 5 3 1
301 -15 2 B> 413 55 3 5 5 3 1
+ 314 -2 2 313 B> 55 3 5 5 3 1
315 -1 2 314 A> 54 3 5 5 3 1
316 -2 2 314 <B 4 53 3 5 5 3 1
+ 330 -16 2 <B 415 53 3 5 5 3 1
331 -17 <A 3 415 53 3 5 5 3 1
332 -16 1 B> 3 415 53 3 5 5 3 1
333 -17 1 <B 416 53 3 5 5 3 1
334 -16 2 B> 416 53 3 5 5 3 1
+ 350 0 2 316 B> 53 3 5 5 3 1
351 1 2 317 A> 5 5 3 5 5 3 1
352 0 2 317 <B 4 5 3 5 5 3 1
+ 369 -17 2 <B 418 5 3 5 5 3 1
370 -18 <A 3 418 5 3 5 5 3 1
371 -17 1 B> 3 418 5 3 5 5 3 1
372 -18 1 <B 419 5 3 5 5 3 1
373 -17 2 B> 419 5 3 5 5 3 1
+ 392 2 2 319 B> 5 3 5 5 3 1
393 3 2 320 A> 3 5 5 3 1
394 2 2 320 <A 53 3 1
+ 414 -18 2 <A 523 3 1
415 -19 <A 3 523 3 1
416 -18 1 B> 3 523 3 1
417 -19 1 <B 4 523 3 1
418 -18 2 B> 4 523 3 1
419 -17 2 3 B> 523 3 1
420 -16 2 3 3 A> 522 3 1
421 -17 2 3 3 <B 4 521 3 1
+ 423 -19 2 <B 43 521 3 1
424 -20 <A 3 43 521 3 1
425 -19 1 B> 3 43 521 3 1
426 -20 1 <B 44 521 3 1
427 -19 2 B> 44 521 3 1
+ 431 -15 2 34 B> 521 3 1
432 -14 2 35 A> 520 3 1
433 -15 2 35 <B 4 519 3 1
After 433 steps (201 lines): state = B.
Produced 28 nonzeros.
Tape index -15, scanned [-20 .. 7].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 113 | 24 | 5 | 12 | 56 | 16 | 0 | 2 | 5 | 13 | 29 | ||
| B | 320 | 9 | 27 | 14 | 117 | 132 | 21 | 1 | 3 | 32 | 7 | 9 | 19 |