2-state 6-symbol #c (T.J. & S. Ligocki)

Comment: This TM produces 15828 nonzeros in 493,600,387 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 4LA 1RA 5LB 1RA 3LB 1 right B 4 left A 1 right A 5 left B 1 right A 3 left B
B 1LB 1LA 5LA 2LA 2RB 1RH 1 left B 1 left A 5 left A 2 left A 2 right B 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 B . . . . . 11
     3   -1 A . . . . .011
     4    0 B . . . . .111
     5   -1 A . . . . .111
     6   -2 A . . . . 0411
     7   -1 B . . . . 1411
     8    0 B . . . . 1211
     9   -1 A . . . . 1211
    10    0 A . . . . 1111
    11   -1 A . . . . 1141
    12   -2 A . . . . 1441
    13   -3 A . . . .04441
    14   -2 B . . . .14441
    15   -1 B . . . .12441
    16    0 B . . . .12241
    17    1 B . . . .12221
    18    0 A . . . .12221
    19    1 A . . . .12211
    20    0 A . . . .12214
    21   -1 A . . . .12244
    22    0 A . . . .12144
    23    1 A . . . .12114
    24    2 A . . . .121110
    25    3 B . . . .1211110
    26    2 B . . . .1211111
    27    1 A . . . .1211111
    28    0 A . . . .1211411
    29   -1 A . . . .1214411
    30   -2 A . . . .1244411
    31   -1 A . . . .1144411
    32    0 A . . . .1114411
    33    1 A . . . .1111411
    34    2 A . . . .1111111
    35    1 A . . . .1111141
    36    0 A . . . .1111441
    37   -1 A . . . .1114441
    38   -2 A . . . .1144441
    39   -3 A . . . .1444441
    40   -4 A . . . 04444441
    41   -3 B . . . 14444441
    42   -2 B . . . 12444441
    43   -1 B . . . 12244441
    44    0 B . . . 12224441
    45    1 B . . . 12222441
    46    2 B . . . 12222241
    47    3 B . . . 12222221
    48    2 A . . . 12222221
    49    3 A . . . 12222211
    50    2 A . . . 12222214
    51    1 A . . . 12222244
    52    2 A . . . 12222144
    53    3 A . . . 12222114
    54    4 A . . . 122221110
    55    5 B . . . 1222211110
    56    4 B . . . 1222211111
    57    3 A . . . 1222211111
    58    2 A . . . 1222211411
    59    1 A . . . 1222214411
    60    0 A . . . 1222244411
    61    1 A . . . 1222144411
    62    2 A . . . 1222114411
    63    3 A . . . 1222111411
    64    4 A . . . 1222111111
    65    3 A . . . 1222111141
    66    2 A . . . 1222111441
    67    1 A . . . 1222114441
    68    0 A . . . 1222144441
    69   -1 A . . . 1222444441
    70    0 A . . . 1221444441
    71    1 A . . . 1221144441
    72    2 A . . . 1221114441
    73    3 A . . . 1221111441
    74    4 A . . . 1221111141
    75    5 A . . . 1221111111
    76    4 A . . . 1221111114
    77    3 A . . . 1221111144
    78    2 A . . . 1221111444
    79    1 A . . . 1221114444
    80    0 A . . . 1221144444
    81   -1 A . . . 1221444444
    82   -2 A . . . 1224444444
    83   -1 A . . . 1214444444
    84    0 A . . . 1211444444
    85    1 A . . . 1211144444
    86    2 A . . . 1211114444
    87    3 A . . . 1211111444
    88    4 A . . . 1211111144
    89    5 A . . . 1211111114
    90    6 A . . . 12111111110
    91    7 B . . . 121111111110
    92    6 B . . . 121111111111
    93    5 A . . . 121111111111
    94    4 A . . . 121111111411
    95    3 A . . . 121111114411
    96    2 A . . . 121111144411
    97    1 A . . . 121111444411
    98    0 A . . . 121114444411
    99   -1 A . . . 121144444411
   100   -2 A . . . 121444444411
   101   -3 A . . . 124444444411
   102   -2 A . . . 114444444411
   103   -1 A . . . 111444444411
   104    0 A . . . 111144444411
   105    1 A . . . 111114444411
   106    2 A . . . 111111444411
   107    3 A . . . 111111144411
   108    4 A . . . 111111114411
   109    5 A . . . 111111111411
   110    6 A . . . 111111111111
   111    5 A . . . 111111111141
   112    4 A . . . 111111111441
   113    3 A . . . 111111114441
   114    2 A . . . 111111144441
   115    1 A . . . 111111444441
   116    0 A . . . 111114444441
   117   -1 A . . . 111144444441
   118   -2 A . . . 111444444441
   119   -3 A . . . 114444444441
   120   -4 A . . . 144444444441
   121   -5 A . . .0444444444441
   122   -4 B . . .1444444444441
   123   -3 B . . .1244444444441
   124   -2 B . . .1224444444441
   125   -1 B . . .1222444444441
   126    0 B . . .1222244444441
   127    1 B . . .1222224444441
   128    2 B . . .1222222444441
   129    3 B . . .1222222244441
   130    4 B . . .1222222224441
   131    5 B . . .1222222222441
   132    6 B . . .1222222222241
   133    7 B . . .1222222222221
   134    6 A . . .1222222222221
   135    7 A . . .1222222222211
   136    6 A . . .1222222222214
   137    5 A . . .1222222222244
   138    6 A . . .1222222222144
   139    7 A . . .1222222222114
   140    8 A . . .12222222221110
   141    9 B . . .122222222211110
   142    8 B . . .122222222211111
   143    7 A . . .122222222211111
   144    6 A . . .122222222211411
   145    5 A . . .122222222214411
   146    4 A . . .122222222244411
   147    5 A . . .122222222144411
   148    6 A . . .122222222114411
   149    7 A . . .122222222111411
   150    8 A . . .122222222111111
   151    7 A . . .122222222111141
   152    6 A . . .122222222111441
   153    5 A . . .122222222114441
   154    4 A . . .122222222144441
   155    3 A . . .122222222444441
   156    4 A . . .122222221444441
   157    5 A . . .122222221144441
   158    6 A . . .122222221114441
   159    7 A . . .122222221111441
   160    8 A . . .122222221111141
   161    9 A . . .122222221111111
   162    8 A . . .122222221111114
   163    7 A . . .122222221111144
   164    6 A . . .122222221111444
   165    5 A . . .122222221114444
   166    4 A . . .122222221144444
   167    3 A . . .122222221444444
   168    2 A . . .122222224444444
   169    3 A . . .122222214444444
   170    4 A . . .122222211444444
   171    5 A . . .122222211144444
   172    6 A . . .122222211114444
   173    7 A . . .122222211111444
   174    8 A . . .122222211111144
   175    9 A . . .122222211111114
   176   10 A . . .1222222111111110
   177   11 B . . .12222221111111110
   178   10 B . . .12222221111111111
   179    9 A . . .12222221111111111
   180    8 A . . .12222221111111411
   181    7 A . . .12222221111114411
   182    6 A . . .12222221111144411
   183    5 A . . .12222221111444411
   184    4 A . . .12222221114444411
   185    3 A . . .12222221144444411
   186    2 A . . .12222221444444411
   187    1 A . . .12222224444444411
   188    2 A . . .12222214444444411
   189    3 A . . .12222211444444411
   190    4 A . . .12222211144444411
   191    5 A . . .12222211114444411
   192    6 A . . .12222211111444411
   193    7 A . . .12222211111144411
   194    8 A . . .12222211111114411
   195    9 A . . .12222211111111411
   196   10 A . . .12222211111111111
   197    9 A . . .12222211111111141
   198    8 A . . .12222211111111441
   199    7 A . . .12222211111114441
   200    6 A . . .12222211111144441

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 6, scanned [-5 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 162 11 80 16   55   0 5 9   22  
B 38 6 11     21   1 2     7  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:13 CEST 2010