Comment: This TM produces 15828 nonzeros in 493,600,387 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 1RB | 4LA | 1RA | 5LB | 1RA | 3LB | 1 | right | B | 4 | left | A | 1 | right | A | 5 | left | B | 1 | right | A | 3 | left | B |
| B | 1LB | 1LA | 5LA | 2LA | 2RB | 1RH | 1 | left | B | 1 | left | A | 5 | left | A | 2 | left | A | 2 | right | B | 1 | right | H |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . . . 0
1 1 B . . . . . 10
2 0 B . . . . . 11
3 -1 A . . . . .011
4 0 B . . . . .111
5 -1 A . . . . .111
6 -2 A . . . . 0411
7 -1 B . . . . 1411
8 0 B . . . . 1211
9 -1 A . . . . 1211
10 0 A . . . . 1111
11 -1 A . . . . 1141
12 -2 A . . . . 1441
13 -3 A . . . .04441
14 -2 B . . . .14441
15 -1 B . . . .12441
16 0 B . . . .12241
17 1 B . . . .12221
18 0 A . . . .12221
19 1 A . . . .12211
20 0 A . . . .12214
21 -1 A . . . .12244
22 0 A . . . .12144
23 1 A . . . .12114
24 2 A . . . .121110
25 3 B . . . .1211110
26 2 B . . . .1211111
27 1 A . . . .1211111
28 0 A . . . .1211411
29 -1 A . . . .1214411
30 -2 A . . . .1244411
31 -1 A . . . .1144411
32 0 A . . . .1114411
33 1 A . . . .1111411
34 2 A . . . .1111111
35 1 A . . . .1111141
36 0 A . . . .1111441
37 -1 A . . . .1114441
38 -2 A . . . .1144441
39 -3 A . . . .1444441
40 -4 A . . . 04444441
41 -3 B . . . 14444441
42 -2 B . . . 12444441
43 -1 B . . . 12244441
44 0 B . . . 12224441
45 1 B . . . 12222441
46 2 B . . . 12222241
47 3 B . . . 12222221
48 2 A . . . 12222221
49 3 A . . . 12222211
50 2 A . . . 12222214
51 1 A . . . 12222244
52 2 A . . . 12222144
53 3 A . . . 12222114
54 4 A . . . 122221110
55 5 B . . . 1222211110
56 4 B . . . 1222211111
57 3 A . . . 1222211111
58 2 A . . . 1222211411
59 1 A . . . 1222214411
60 0 A . . . 1222244411
61 1 A . . . 1222144411
62 2 A . . . 1222114411
63 3 A . . . 1222111411
64 4 A . . . 1222111111
65 3 A . . . 1222111141
66 2 A . . . 1222111441
67 1 A . . . 1222114441
68 0 A . . . 1222144441
69 -1 A . . . 1222444441
70 0 A . . . 1221444441
71 1 A . . . 1221144441
72 2 A . . . 1221114441
73 3 A . . . 1221111441
74 4 A . . . 1221111141
75 5 A . . . 1221111111
76 4 A . . . 1221111114
77 3 A . . . 1221111144
78 2 A . . . 1221111444
79 1 A . . . 1221114444
80 0 A . . . 1221144444
81 -1 A . . . 1221444444
82 -2 A . . . 1224444444
83 -1 A . . . 1214444444
84 0 A . . . 1211444444
85 1 A . . . 1211144444
86 2 A . . . 1211114444
87 3 A . . . 1211111444
88 4 A . . . 1211111144
89 5 A . . . 1211111114
90 6 A . . . 12111111110
91 7 B . . . 121111111110
92 6 B . . . 121111111111
93 5 A . . . 121111111111
94 4 A . . . 121111111411
95 3 A . . . 121111114411
96 2 A . . . 121111144411
97 1 A . . . 121111444411
98 0 A . . . 121114444411
99 -1 A . . . 121144444411
100 -2 A . . . 121444444411
101 -3 A . . . 124444444411
102 -2 A . . . 114444444411
103 -1 A . . . 111444444411
104 0 A . . . 111144444411
105 1 A . . . 111114444411
106 2 A . . . 111111444411
107 3 A . . . 111111144411
108 4 A . . . 111111114411
109 5 A . . . 111111111411
110 6 A . . . 111111111111
111 5 A . . . 111111111141
112 4 A . . . 111111111441
113 3 A . . . 111111114441
114 2 A . . . 111111144441
115 1 A . . . 111111444441
116 0 A . . . 111114444441
117 -1 A . . . 111144444441
118 -2 A . . . 111444444441
119 -3 A . . . 114444444441
120 -4 A . . . 144444444441
121 -5 A . . .0444444444441
122 -4 B . . .1444444444441
123 -3 B . . .1244444444441
124 -2 B . . .1224444444441
125 -1 B . . .1222444444441
126 0 B . . .1222244444441
127 1 B . . .1222224444441
128 2 B . . .1222222444441
129 3 B . . .1222222244441
130 4 B . . .1222222224441
131 5 B . . .1222222222441
132 6 B . . .1222222222241
133 7 B . . .1222222222221
134 6 A . . .1222222222221
135 7 A . . .1222222222211
136 6 A . . .1222222222214
137 5 A . . .1222222222244
138 6 A . . .1222222222144
139 7 A . . .1222222222114
140 8 A . . .12222222221110
141 9 B . . .122222222211110
142 8 B . . .122222222211111
143 7 A . . .122222222211111
144 6 A . . .122222222211411
145 5 A . . .122222222214411
146 4 A . . .122222222244411
147 5 A . . .122222222144411
148 6 A . . .122222222114411
149 7 A . . .122222222111411
150 8 A . . .122222222111111
151 7 A . . .122222222111141
152 6 A . . .122222222111441
153 5 A . . .122222222114441
154 4 A . . .122222222144441
155 3 A . . .122222222444441
156 4 A . . .122222221444441
157 5 A . . .122222221144441
158 6 A . . .122222221114441
159 7 A . . .122222221111441
160 8 A . . .122222221111141
161 9 A . . .122222221111111
162 8 A . . .122222221111114
163 7 A . . .122222221111144
164 6 A . . .122222221111444
165 5 A . . .122222221114444
166 4 A . . .122222221144444
167 3 A . . .122222221444444
168 2 A . . .122222224444444
169 3 A . . .122222214444444
170 4 A . . .122222211444444
171 5 A . . .122222211144444
172 6 A . . .122222211114444
173 7 A . . .122222211111444
174 8 A . . .122222211111144
175 9 A . . .122222211111114
176 10 A . . .1222222111111110
177 11 B . . .12222221111111110
178 10 B . . .12222221111111111
179 9 A . . .12222221111111111
180 8 A . . .12222221111111411
181 7 A . . .12222221111114411
182 6 A . . .12222221111144411
183 5 A . . .12222221111444411
184 4 A . . .12222221114444411
185 3 A . . .12222221144444411
186 2 A . . .12222221444444411
187 1 A . . .12222224444444411
188 2 A . . .12222214444444411
189 3 A . . .12222211444444411
190 4 A . . .12222211144444411
191 5 A . . .12222211114444411
192 6 A . . .12222211111444411
193 7 A . . .12222211111144411
194 8 A . . .12222211111114411
195 9 A . . .12222211111111411
196 10 A . . .12222211111111111
197 9 A . . .12222211111111141
198 8 A . . .12222211111111441
199 7 A . . .12222211111114441
200 6 A . . .12222211111144441
After 200 steps (201 lines): state = A.
Produced 17 nonzeros.
Tape index 6, scanned [-5 .. 11].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 162 | 11 | 80 | 16 | 55 | 0 | 5 | 9 | 22 | ||||
| B | 38 | 6 | 11 | 21 | 1 | 2 | 7 | ||||||