Comment: This TM produces 15828 nonzeros in 493,600,387 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 4LA | 1RA | 5LB | 1RA | 3LB | 1 | right | B | 4 | left | A | 1 | right | A | 5 | left | B | 1 | right | A | 3 | left | B |
B | 1LB | 1LA | 5LA | 2LA | 2RB | 1RH | 1 | left | B | 1 | left | A | 5 | left | A | 2 | left | A | 2 | right | B | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as bck-2-macro machine. The same TM as bck-2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . 0 1 1 B . . . . . 10 2 0 B . . . . . 11 3 -1 A . . . . .011 4 0 B . . . . .111 5 -1 A . . . . .111 6 -2 A . . . . 0411 7 -1 B . . . . 1411 8 0 B . . . . 1211 9 -1 A . . . . 1211 10 0 A . . . . 1111 11 -1 A . . . . 1141 12 -2 A . . . . 1441 13 -3 A . . . .04441 14 -2 B . . . .14441 15 -1 B . . . .12441 16 0 B . . . .12241 17 1 B . . . .12221 18 0 A . . . .12221 19 1 A . . . .12211 20 0 A . . . .12214 21 -1 A . . . .12244 22 0 A . . . .12144 23 1 A . . . .12114 24 2 A . . . .121110 25 3 B . . . .1211110 26 2 B . . . .1211111 27 1 A . . . .1211111 28 0 A . . . .1211411 29 -1 A . . . .1214411 30 -2 A . . . .1244411 31 -1 A . . . .1144411 32 0 A . . . .1114411 33 1 A . . . .1111411 34 2 A . . . .1111111 35 1 A . . . .1111141 36 0 A . . . .1111441 37 -1 A . . . .1114441 38 -2 A . . . .1144441 39 -3 A . . . .1444441 40 -4 A . . . 04444441 41 -3 B . . . 14444441 42 -2 B . . . 12444441 43 -1 B . . . 12244441 44 0 B . . . 12224441 45 1 B . . . 12222441 46 2 B . . . 12222241 47 3 B . . . 12222221 48 2 A . . . 12222221 49 3 A . . . 12222211 50 2 A . . . 12222214 51 1 A . . . 12222244 52 2 A . . . 12222144 53 3 A . . . 12222114 54 4 A . . . 122221110 55 5 B . . . 1222211110 56 4 B . . . 1222211111 57 3 A . . . 1222211111 58 2 A . . . 1222211411 59 1 A . . . 1222214411 60 0 A . . . 1222244411 61 1 A . . . 1222144411 62 2 A . . . 1222114411 63 3 A . . . 1222111411 64 4 A . . . 1222111111 65 3 A . . . 1222111141 66 2 A . . . 1222111441 67 1 A . . . 1222114441 68 0 A . . . 1222144441 69 -1 A . . . 1222444441 70 0 A . . . 1221444441 71 1 A . . . 1221144441 72 2 A . . . 1221114441 73 3 A . . . 1221111441 74 4 A . . . 1221111141 75 5 A . . . 1221111111 76 4 A . . . 1221111114 77 3 A . . . 1221111144 78 2 A . . . 1221111444 79 1 A . . . 1221114444 80 0 A . . . 1221144444 81 -1 A . . . 1221444444 82 -2 A . . . 1224444444 83 -1 A . . . 1214444444 84 0 A . . . 1211444444 85 1 A . . . 1211144444 86 2 A . . . 1211114444 87 3 A . . . 1211111444 88 4 A . . . 1211111144 89 5 A . . . 1211111114 90 6 A . . . 12111111110 91 7 B . . . 121111111110 92 6 B . . . 121111111111 93 5 A . . . 121111111111 94 4 A . . . 121111111411 95 3 A . . . 121111114411 96 2 A . . . 121111144411 97 1 A . . . 121111444411 98 0 A . . . 121114444411 99 -1 A . . . 121144444411 100 -2 A . . . 121444444411 101 -3 A . . . 124444444411 102 -2 A . . . 114444444411 103 -1 A . . . 111444444411 104 0 A . . . 111144444411 105 1 A . . . 111114444411 106 2 A . . . 111111444411 107 3 A . . . 111111144411 108 4 A . . . 111111114411 109 5 A . . . 111111111411 110 6 A . . . 111111111111 111 5 A . . . 111111111141 112 4 A . . . 111111111441 113 3 A . . . 111111114441 114 2 A . . . 111111144441 115 1 A . . . 111111444441 116 0 A . . . 111114444441 117 -1 A . . . 111144444441 118 -2 A . . . 111444444441 119 -3 A . . . 114444444441 120 -4 A . . . 144444444441 121 -5 A . . .0444444444441 122 -4 B . . .1444444444441 123 -3 B . . .1244444444441 124 -2 B . . .1224444444441 125 -1 B . . .1222444444441 126 0 B . . .1222244444441 127 1 B . . .1222224444441 128 2 B . . .1222222444441 129 3 B . . .1222222244441 130 4 B . . .1222222224441 131 5 B . . .1222222222441 132 6 B . . .1222222222241 133 7 B . . .1222222222221 134 6 A . . .1222222222221 135 7 A . . .1222222222211 136 6 A . . .1222222222214 137 5 A . . .1222222222244 138 6 A . . .1222222222144 139 7 A . . .1222222222114 140 8 A . . .12222222221110 141 9 B . . .122222222211110 142 8 B . . .122222222211111 143 7 A . . .122222222211111 144 6 A . . .122222222211411 145 5 A . . .122222222214411 146 4 A . . .122222222244411 147 5 A . . .122222222144411 148 6 A . . .122222222114411 149 7 A . . .122222222111411 150 8 A . . .122222222111111 151 7 A . . .122222222111141 152 6 A . . .122222222111441 153 5 A . . .122222222114441 154 4 A . . .122222222144441 155 3 A . . .122222222444441 156 4 A . . .122222221444441 157 5 A . . .122222221144441 158 6 A . . .122222221114441 159 7 A . . .122222221111441 160 8 A . . .122222221111141 161 9 A . . .122222221111111 162 8 A . . .122222221111114 163 7 A . . .122222221111144 164 6 A . . .122222221111444 165 5 A . . .122222221114444 166 4 A . . .122222221144444 167 3 A . . .122222221444444 168 2 A . . .122222224444444 169 3 A . . .122222214444444 170 4 A . . .122222211444444 171 5 A . . .122222211144444 172 6 A . . .122222211114444 173 7 A . . .122222211111444 174 8 A . . .122222211111144 175 9 A . . .122222211111114 176 10 A . . .1222222111111110 177 11 B . . .12222221111111110 178 10 B . . .12222221111111111 179 9 A . . .12222221111111111 180 8 A . . .12222221111111411 181 7 A . . .12222221111114411 182 6 A . . .12222221111144411 183 5 A . . .12222221111444411 184 4 A . . .12222221114444411 185 3 A . . .12222221144444411 186 2 A . . .12222221444444411 187 1 A . . .12222224444444411 188 2 A . . .12222214444444411 189 3 A . . .12222211444444411 190 4 A . . .12222211144444411 191 5 A . . .12222211114444411 192 6 A . . .12222211111444411 193 7 A . . .12222211111144411 194 8 A . . .12222211111114411 195 9 A . . .12222211111111411 196 10 A . . .12222211111111111 197 9 A . . .12222211111111141 198 8 A . . .12222211111111441 199 7 A . . .12222211111114441 200 6 A . . .12222211111144441 After 200 steps (201 lines): state = A. Produced 17 nonzeros. Tape index 6, scanned [-5 .. 11].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 162 | 11 | 80 | 16 | 55 | 0 | 5 | 9 | 22 | ||||
B | 38 | 6 | 11 | 21 | 1 | 2 | 7 |