3-state 3-symbol TM #e of G. Lafitte & C. Papazian

Comment: This TM produces 2,950,149 nonzeros in 4,144,465,135,614 steps.

State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R Z2L C2L 1 right B 2 left Z 2 left C
B C1L B2R B1L 1 left C 2 right B 1 left B
C A1L C2R A2L 1 left A 2 right C 2 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 2.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (00)A>
    1        4       2  (22)C>
    2        7      -1  <A(22) 10
    3       15      -3  <C(11) 11 10
    4       20       0  12 (22)B> 11 10
    5       22       2  12 22 (22)B> 10
    6       27      -1  12 22 <A(22) 21
    7       29      -3  12 <A(22) 22 21
    8       33      -5  <C(22) 222 21
    9       45      -7  <B(11) 11 222 21
   10       47      -9  <A(11) 112 222 21
   11       50      -6  01 (22)B> 112 222 21
   12       54      -2  01 222 (22)B> 222 21
   13       57      -5  01 222 <B(11) 12 22 21
   14       61      -9  01 <B(11) 112 12 22 21
   15       64      -6  02 (22)B> 112 12 22 21
   16       68      -2  02 222 (22)B> 12 22 21
   17       73      -5  02 222 <B(11) 11 22 21
   18       77      -9  02 <B(11) 113 22 21
   19       79     -11  <C(11) 114 22 21
   20       84      -8  12 (22)B> 114 22 21
   21       92       0  12 224 (22)B> 22 21
   22       95      -3  12 224 <B(11) 12 21
   23      103     -11  12 <B(11) 114 12 21
   24      108      -8  22 (22)B> 114 12 21
   25      116       0  225 (22)B> 12 21
   26      121      -3  225 <B(11) 11 21
   27      131     -13  <B(11) 116 21
   28      133     -15  <A(11) 117 21
   29      136     -12  01 (22)B> 117 21
   30      150       2  01 227 (22)B> 21
   31      153      -1  01 227 <B(11) 11
   32      167     -15  01 <B(11) 118
   33      170     -12  02 (22)B> 118
   34      186       4  02 228 (22)B>
   35      189       1  02 228 <C(22) 10
   36      205     -15  02 <C(22) 228 10
   37      213     -17  <B(11) 12 228 10
   38      215     -19  <A(11) 11 12 228 10
   39      218     -16  01 (22)B> 11 12 228 10
   40      220     -14  01 22 (22)B> 12 228 10
   41      225     -17  01 22 <B(11) 11 228 10
   42      227     -19  01 <B(11) 112 228 10
   43      230     -16  02 (22)B> 112 228 10
   44      234     -12  02 222 (22)B> 228 10
   45      237     -15  02 222 <B(11) 12 227 10
   46      241     -19  02 <B(11) 112 12 227 10
   47      243     -21  <C(11) 113 12 227 10
   48      248     -18  12 (22)B> 113 12 227 10
   49      254     -12  12 223 (22)B> 12 227 10
   50      259     -15  12 223 <B(11) 11 227 10
   51      265     -21  12 <B(11) 114 227 10
   52      270     -18  22 (22)B> 114 227 10
   53      278     -10  225 (22)B> 227 10
   54      281     -13  225 <B(11) 12 226 10
   55      291     -23  <B(11) 115 12 226 10
   56      293     -25  <A(11) 116 12 226 10
   57      296     -22  01 (22)B> 116 12 226 10
   58      308     -10  01 226 (22)B> 12 226 10
   59      313     -13  01 226 <B(11) 11 226 10
   60      325     -25  01 <B(11) 117 226 10
   61      328     -22  02 (22)B> 117 226 10
   62      342      -8  02 227 (22)B> 226 10
   63      345     -11  02 227 <B(11) 12 225 10
   64      359     -25  02 <B(11) 117 12 225 10
   65      361     -27  <C(11) 118 12 225 10
   66      366     -24  12 (22)B> 118 12 225 10
   67      382      -8  12 228 (22)B> 12 225 10
   68      387     -11  12 228 <B(11) 11 225 10
   69      403     -27  12 <B(11) 119 225 10
   70      408     -24  22 (22)B> 119 225 10
   71      426      -6  2210 (22)B> 225 10
   72      429      -9  2210 <B(11) 12 224 10
   73      449     -29  <B(11) 1110 12 224 10
   74      451     -31  <A(11) 1111 12 224 10
   75      454     -28  01 (22)B> 1111 12 224 10
   76      476      -6  01 2211 (22)B> 12 224 10
   77      481      -9  01 2211 <B(11) 11 224 10
   78      503     -31  01 <B(11) 1112 224 10
   79      506     -28  02 (22)B> 1112 224 10
   80      530      -4  02 2212 (22)B> 224 10
   81      533      -7  02 2212 <B(11) 12 223 10
   82      557     -31  02 <B(11) 1112 12 223 10
   83      559     -33  <C(11) 1113 12 223 10
   84      564     -30  12 (22)B> 1113 12 223 10
   85      590      -4  12 2213 (22)B> 12 223 10
   86      595      -7  12 2213 <B(11) 11 223 10
   87      621     -33  12 <B(11) 1114 223 10
   88      626     -30  22 (22)B> 1114 223 10
   89      654      -2  2215 (22)B> 223 10
   90      657      -5  2215 <B(11) 12 222 10
   91      687     -35  <B(11) 1115 12 222 10
   92      689     -37  <A(11) 1116 12 222 10
   93      692     -34  01 (22)B> 1116 12 222 10
   94      724      -2  01 2216 (22)B> 12 222 10
   95      729      -5  01 2216 <B(11) 11 222 10
   96      761     -37  01 <B(11) 1117 222 10
   97      764     -34  02 (22)B> 1117 222 10
   98      798       0  02 2217 (22)B> 222 10
   99      801      -3  02 2217 <B(11) 12 22 10
  100      835     -37  02 <B(11) 1117 12 22 10
  101      837     -39  <C(11) 1118 12 22 10
  102      842     -36  12 (22)B> 1118 12 22 10
  103      878       0  12 2218 (22)B> 12 22 10
  104      883      -3  12 2218 <B(11) 11 22 10
  105      919     -39  12 <B(11) 1119 22 10
  106      924     -36  22 (22)B> 1119 22 10
  107      962       2  2220 (22)B> 22 10
  108      965      -1  2220 <B(11) 12 10
  109     1005     -41  <B(11) 1120 12 10
  110     1007     -43  <A(11) 1121 12 10
  111     1010     -40  01 (22)B> 1121 12 10
  112     1052       2  01 2221 (22)B> 12 10
  113     1057      -1  01 2221 <B(11) 11 10
  114     1099     -43  01 <B(11) 1122 10
  115     1102     -40  02 (22)B> 1122 10
  116     1146       4  02 2222 (22)B> 10
  117     1151       1  02 2222 <A(22) 21
  118     1195     -43  02 <A(22) 2222 21
  119     1197     -45  <A(12) 2223 21
  120     1204     -42  02 (22)B> 2223 21
  121     1207     -45  02 <B(11) 12 2222 21
  122     1209     -47  <C(11) 11 12 2222 21
  123     1214     -44  12 (22)B> 11 12 2222 21
  124     1216     -42  12 22 (22)B> 12 2222 21
  125     1221     -45  12 22 <B(11) 11 2222 21
  126     1223     -47  12 <B(11) 112 2222 21
  127     1228     -44  22 (22)B> 112 2222 21
  128     1232     -40  223 (22)B> 2222 21
  129     1235     -43  223 <B(11) 12 2221 21
  130     1241     -49  <B(11) 113 12 2221 21
  131     1243     -51  <A(11) 114 12 2221 21
  132     1246     -48  01 (22)B> 114 12 2221 21
  133     1254     -40  01 224 (22)B> 12 2221 21
  134     1259     -43  01 224 <B(11) 11 2221 21
  135     1267     -51  01 <B(11) 115 2221 21
  136     1270     -48  02 (22)B> 115 2221 21
  137     1280     -38  02 225 (22)B> 2221 21
  138     1283     -41  02 225 <B(11) 12 2220 21
  139     1293     -51  02 <B(11) 115 12 2220 21
  140     1295     -53  <C(11) 116 12 2220 21
  141     1300     -50  12 (22)B> 116 12 2220 21
  142     1312     -38  12 226 (22)B> 12 2220 21
  143     1317     -41  12 226 <B(11) 11 2220 21
  144     1329     -53  12 <B(11) 117 2220 21
  145     1334     -50  22 (22)B> 117 2220 21
  146     1348     -36  228 (22)B> 2220 21
  147     1351     -39  228 <B(11) 12 2219 21
  148     1367     -55  <B(11) 118 12 2219 21
  149     1369     -57  <A(11) 119 12 2219 21
  150     1372     -54  01 (22)B> 119 12 2219 21
  151     1390     -36  01 229 (22)B> 12 2219 21
  152     1395     -39  01 229 <B(11) 11 2219 21
  153     1413     -57  01 <B(11) 1110 2219 21
  154     1416     -54  02 (22)B> 1110 2219 21
  155     1436     -34  02 2210 (22)B> 2219 21
  156     1439     -37  02 2210 <B(11) 12 2218 21
  157     1459     -57  02 <B(11) 1110 12 2218 21
  158     1461     -59  <C(11) 1111 12 2218 21
  159     1466     -56  12 (22)B> 1111 12 2218 21
  160     1488     -34  12 2211 (22)B> 12 2218 21
  161     1493     -37  12 2211 <B(11) 11 2218 21
  162     1515     -59  12 <B(11) 1112 2218 21
  163     1520     -56  22 (22)B> 1112 2218 21
  164     1544     -32  2213 (22)B> 2218 21
  165     1547     -35  2213 <B(11) 12 2217 21
  166     1573     -61  <B(11) 1113 12 2217 21
  167     1575     -63  <A(11) 1114 12 2217 21
  168     1578     -60  01 (22)B> 1114 12 2217 21
  169     1606     -32  01 2214 (22)B> 12 2217 21
  170     1611     -35  01 2214 <B(11) 11 2217 21
  171     1639     -63  01 <B(11) 1115 2217 21
  172     1642     -60  02 (22)B> 1115 2217 21
  173     1672     -30  02 2215 (22)B> 2217 21
  174     1675     -33  02 2215 <B(11) 12 2216 21
  175     1705     -63  02 <B(11) 1115 12 2216 21
  176     1707     -65  <C(11) 1116 12 2216 21
  177     1712     -62  12 (22)B> 1116 12 2216 21
  178     1744     -30  12 2216 (22)B> 12 2216 21
  179     1749     -33  12 2216 <B(11) 11 2216 21
  180     1781     -65  12 <B(11) 1117 2216 21
  181     1786     -62  22 (22)B> 1117 2216 21
  182     1820     -28  2218 (22)B> 2216 21
  183     1823     -31  2218 <B(11) 12 2215 21
  184     1859     -67  <B(11) 1118 12 2215 21
  185     1861     -69  <A(11) 1119 12 2215 21
  186     1864     -66  01 (22)B> 1119 12 2215 21
  187     1902     -28  01 2219 (22)B> 12 2215 21
  188     1907     -31  01 2219 <B(11) 11 2215 21
  189     1945     -69  01 <B(11) 1120 2215 21
  190     1948     -66  02 (22)B> 1120 2215 21
  191     1988     -26  02 2220 (22)B> 2215 21
  192     1991     -29  02 2220 <B(11) 12 2214 21
  193     2031     -69  02 <B(11) 1120 12 2214 21
  194     2033     -71  <C(11) 1121 12 2214 21
  195     2038     -68  12 (22)B> 1121 12 2214 21
  196     2080     -26  12 2221 (22)B> 12 2214 21
  197     2085     -29  12 2221 <B(11) 11 2214 21
  198     2127     -71  12 <B(11) 1122 2214 21
  199     2132     -68  22 (22)B> 1122 2214 21
  200     2176     -24  2223 (22)B> 2214 21

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 2176
Tape index:  -24
nonzeros:    78
log10(nonzeros):    1.892
log10(steps   ):    3.338

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 3
    T 3-state 3-symbol TM #e of G. Lafitte & C. Papazian
    5T  B1R Z2L C2L  C1L B2R B1L  A1L C2R A2L
    : 2,950,149 4,144,465,135,614
    L 52
    M	201
    pref	sim
    machv Laf33_e  	just simple
    machv Laf33_e-r	with repetitions reduced
    machv Laf33_e-1	with tape symbol exponents
    machv Laf33_e-m	as 2-bck-macro machine
    machv Laf33_e-a	as 2-bck-macro machine with pure additive config-TRs
    iam	Laf33_e-m
    mtype	2 0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:11:51 CEST 2010
    edate	Tue Jul  6 22:11:51 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:51 CEST 2010
Ready: Tue Jul 6 22:11:51 CEST 2010