Comment: This TM produces 90'604 nonzeros in 8'619'024'596 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3L | B1L | A1R | A3R | 1 | right | B | 3 | left | A | 1 | left | B | 1 | right | A | 3 | right | A |
B | B2L | A3L | A3R | B4R | Z1R | 2 | left | B | 3 | left | A | 3 | right | A | 4 | right | B | 1 | right | Z |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 2 3 -1 <A 3 2 4 0 1 B> 3 2 5 1 1 4 B> 2 6 2 1 4 3 A> 7 3 1 4 3 1 B> 8 2 1 4 3 1 <B 2 9 1 1 4 3 <A 3 2 10 2 1 4 1 A> 3 2 11 3 1 4 1 1 A> 2 12 2 1 4 1 1 <B 1 13 1 1 4 1 <A 3 1 14 0 1 4 <A 3 3 1 15 1 1 3 A> 3 3 1 + 17 3 1 3 1 1 A> 1 18 2 1 3 1 1 <A 3 + 20 0 1 3 <A 33 21 1 1 1 A> 33 + 24 4 15 A> 25 5 16 B> 26 4 16 <B 2 27 3 15 <A 3 2 + 32 -2 <A 36 2 33 -1 1 B> 36 2 + 39 5 1 46 B> 2 40 6 1 46 3 A> 41 7 1 46 3 1 B> 42 6 1 46 3 1 <B 2 43 5 1 46 3 <A 3 2 44 6 1 46 1 A> 3 2 45 7 1 46 1 1 A> 2 46 6 1 46 1 1 <B 1 47 5 1 46 1 <A 3 1 48 4 1 46 <A 3 3 1 49 5 1 45 3 A> 3 3 1 + 51 7 1 45 3 1 1 A> 1 52 6 1 45 3 1 1 <A 3 + 54 4 1 45 3 <A 33 55 5 1 45 1 A> 33 + 58 8 1 45 14 A> 59 9 1 45 15 B> 60 8 1 45 15 <B 2 61 7 1 45 14 <A 3 2 + 65 3 1 45 <A 35 2 66 4 1 44 3 A> 35 2 + 71 9 1 44 3 15 A> 2 72 8 1 44 3 15 <B 1 73 7 1 44 3 14 <A 3 1 + 77 3 1 44 3 <A 35 1 78 4 1 44 1 A> 35 1 + 83 9 1 44 16 A> 1 84 8 1 44 16 <A 3 + 90 2 1 44 <A 37 91 3 1 43 3 A> 37 + 98 10 1 43 3 17 A> 99 11 1 43 3 18 B> 100 10 1 43 3 18 <B 2 101 9 1 43 3 17 <A 3 2 + 108 2 1 43 3 <A 38 2 109 3 1 43 1 A> 38 2 + 117 11 1 43 19 A> 2 118 10 1 43 19 <B 1 119 9 1 43 18 <A 3 1 + 127 1 1 43 <A 39 1 128 2 1 4 4 3 A> 39 1 + 137 11 1 4 4 3 19 A> 1 138 10 1 4 4 3 19 <A 3 + 147 1 1 4 4 3 <A 310 148 2 1 4 4 1 A> 310 + 158 12 1 4 4 111 A> 159 13 1 4 4 112 B> 160 12 1 4 4 112 <B 2 161 11 1 4 4 111 <A 3 2 + 172 0 1 4 4 <A 312 2 173 1 1 4 3 A> 312 2 + 185 13 1 4 3 112 A> 2 186 12 1 4 3 112 <B 1 187 11 1 4 3 111 <A 3 1 + 198 0 1 4 3 <A 312 1 199 1 1 4 1 A> 312 1 + 211 13 1 4 113 A> 1 212 12 1 4 113 <A 3 + 225 -1 1 4 <A 314 226 0 1 3 A> 314 + 240 14 1 3 114 A> 241 15 1 3 115 B> 242 14 1 3 115 <B 2 243 13 1 3 114 <A 3 2 + 257 -1 1 3 <A 315 2 258 0 1 1 A> 315 2 + 273 15 117 A> 2 274 14 117 <B 1 275 13 116 <A 3 1 + 291 -3 <A 317 1 292 -2 1 B> 317 1 + 309 15 1 417 B> 1 310 14 1 417 <A 3 311 15 1 416 3 A> 3 312 16 1 416 3 1 A> 313 17 1 416 3 1 1 B> 314 16 1 416 3 1 1 <B 2 315 15 1 416 3 1 <A 3 2 316 14 1 416 3 <A 3 3 2 317 15 1 416 1 A> 3 3 2 + 319 17 1 416 13 A> 2 320 16 1 416 13 <B 1 321 15 1 416 1 1 <A 3 1 + 323 13 1 416 <A 33 1 324 14 1 415 3 A> 33 1 + 327 17 1 415 3 13 A> 1 328 16 1 415 3 13 <A 3 + 331 13 1 415 3 <A 34 332 14 1 415 1 A> 34 + 336 18 1 415 15 A> 337 19 1 415 16 B> 338 18 1 415 16 <B 2 339 17 1 415 15 <A 3 2 + 344 12 1 415 <A 36 2 345 13 1 414 3 A> 36 2 + 351 19 1 414 3 16 A> 2 352 18 1 414 3 16 <B 1 353 17 1 414 3 15 <A 3 1 + 358 12 1 414 3 <A 36 1 359 13 1 414 1 A> 36 1 + 365 19 1 414 17 A> 1 366 18 1 414 17 <A 3 + 373 11 1 414 <A 38 374 12 1 413 3 A> 38 + 382 20 1 413 3 18 A> 383 21 1 413 3 19 B> 384 20 1 413 3 19 <B 2 385 19 1 413 3 18 <A 3 2 + 393 11 1 413 3 <A 39 2 394 12 1 413 1 A> 39 2 + 403 21 1 413 110 A> 2 404 20 1 413 110 <B 1 405 19 1 413 19 <A 3 1 + 414 10 1 413 <A 310 1 415 11 1 412 3 A> 310 1 + 425 21 1 412 3 110 A> 1 426 20 1 412 3 110 <A 3 + 436 10 1 412 3 <A 311 437 11 1 412 1 A> 311 + 448 22 1 412 112 A> 449 23 1 412 113 B> 450 22 1 412 113 <B 2 451 21 1 412 112 <A 3 2 + 463 9 1 412 <A 313 2 464 10 1 411 3 A> 313 2 + 477 23 1 411 3 113 A> 2 478 22 1 411 3 113 <B 1 479 21 1 411 3 112 <A 3 1 + 491 9 1 411 3 <A 313 1 492 10 1 411 1 A> 313 1 + 505 23 1 411 114 A> 1 506 22 1 411 114 <A 3 + 520 8 1 411 <A 315 521 9 1 410 3 A> 315 + 536 24 1 410 3 115 A> 537 25 1 410 3 116 B> 538 24 1 410 3 116 <B 2 539 23 1 410 3 115 <A 3 2 + 554 8 1 410 3 <A 316 2 555 9 1 410 1 A> 316 2 + 571 25 1 410 117 A> 2 572 24 1 410 117 <B 1 573 23 1 410 116 <A 3 1 + 589 7 1 410 <A 317 1 590 8 1 49 3 A> 317 1 + 607 25 1 49 3 117 A> 1 608 24 1 49 3 117 <A 3 + 625 7 1 49 3 <A 318 626 8 1 49 1 A> 318 + 644 26 1 49 119 A> 645 27 1 49 120 B> 646 26 1 49 120 <B 2 647 25 1 49 119 <A 3 2 + 666 6 1 49 <A 320 2 667 7 1 48 3 A> 320 2 + 687 27 1 48 3 120 A> 2 688 26 1 48 3 120 <B 1 689 25 1 48 3 119 <A 3 1 + 708 6 1 48 3 <A 320 1 709 7 1 48 1 A> 320 1 + 729 27 1 48 121 A> 1 730 26 1 48 121 <A 3 + 751 5 1 48 <A 322 752 6 1 47 3 A> 322 + 774 28 1 47 3 122 A> 775 29 1 47 3 123 B> 776 28 1 47 3 123 <B 2 777 27 1 47 3 122 <A 3 2 + 799 5 1 47 3 <A 323 2 800 6 1 47 1 A> 323 2 + 823 29 1 47 124 A> 2 824 28 1 47 124 <B 1 825 27 1 47 123 <A 3 1 + 848 4 1 47 <A 324 1 849 5 1 46 3 A> 324 1 After 849 steps (201 lines): state = A. Produced 33 nonzeros. Tape index 5, scanned [-3 .. 29].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 779 | 18 | 365 | 13 | 365 | 18 | 0 | 13 | 11 | 9 | 14 |
B | 70 | 15 | 29 | 2 | 24 | 1 | 2 | 5 | 4 |