Comment: This TM produces 90'604 nonzeros in 8'619'024'596 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | A3L | B1L | A1R | A3R | 1 | right | B | 3 | left | A | 1 | left | B | 1 | right | A | 3 | right | A |
| B | B2L | A3L | A3R | B4R | Z1R | 2 | left | B | 3 | left | A | 3 | right | A | 4 | right | B | 1 | right | Z |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 2
3 -1 <A 3 2
4 0 1 B> 3 2
5 1 1 4 B> 2
6 2 1 4 3 A>
7 3 1 4 3 1 B>
8 2 1 4 3 1 <B 2
9 1 1 4 3 <A 3 2
10 2 1 4 1 A> 3 2
11 3 1 4 1 1 A> 2
12 2 1 4 1 1 <B 1
13 1 1 4 1 <A 3 1
14 0 1 4 <A 3 3 1
15 1 1 3 A> 3 3 1
+ 17 3 1 3 1 1 A> 1
18 2 1 3 1 1 <A 3
+ 20 0 1 3 <A 33
21 1 1 1 A> 33
+ 24 4 15 A>
25 5 16 B>
26 4 16 <B 2
27 3 15 <A 3 2
+ 32 -2 <A 36 2
33 -1 1 B> 36 2
+ 39 5 1 46 B> 2
40 6 1 46 3 A>
41 7 1 46 3 1 B>
42 6 1 46 3 1 <B 2
43 5 1 46 3 <A 3 2
44 6 1 46 1 A> 3 2
45 7 1 46 1 1 A> 2
46 6 1 46 1 1 <B 1
47 5 1 46 1 <A 3 1
48 4 1 46 <A 3 3 1
49 5 1 45 3 A> 3 3 1
+ 51 7 1 45 3 1 1 A> 1
52 6 1 45 3 1 1 <A 3
+ 54 4 1 45 3 <A 33
55 5 1 45 1 A> 33
+ 58 8 1 45 14 A>
59 9 1 45 15 B>
60 8 1 45 15 <B 2
61 7 1 45 14 <A 3 2
+ 65 3 1 45 <A 35 2
66 4 1 44 3 A> 35 2
+ 71 9 1 44 3 15 A> 2
72 8 1 44 3 15 <B 1
73 7 1 44 3 14 <A 3 1
+ 77 3 1 44 3 <A 35 1
78 4 1 44 1 A> 35 1
+ 83 9 1 44 16 A> 1
84 8 1 44 16 <A 3
+ 90 2 1 44 <A 37
91 3 1 43 3 A> 37
+ 98 10 1 43 3 17 A>
99 11 1 43 3 18 B>
100 10 1 43 3 18 <B 2
101 9 1 43 3 17 <A 3 2
+ 108 2 1 43 3 <A 38 2
109 3 1 43 1 A> 38 2
+ 117 11 1 43 19 A> 2
118 10 1 43 19 <B 1
119 9 1 43 18 <A 3 1
+ 127 1 1 43 <A 39 1
128 2 1 4 4 3 A> 39 1
+ 137 11 1 4 4 3 19 A> 1
138 10 1 4 4 3 19 <A 3
+ 147 1 1 4 4 3 <A 310
148 2 1 4 4 1 A> 310
+ 158 12 1 4 4 111 A>
159 13 1 4 4 112 B>
160 12 1 4 4 112 <B 2
161 11 1 4 4 111 <A 3 2
+ 172 0 1 4 4 <A 312 2
173 1 1 4 3 A> 312 2
+ 185 13 1 4 3 112 A> 2
186 12 1 4 3 112 <B 1
187 11 1 4 3 111 <A 3 1
+ 198 0 1 4 3 <A 312 1
199 1 1 4 1 A> 312 1
+ 211 13 1 4 113 A> 1
212 12 1 4 113 <A 3
+ 225 -1 1 4 <A 314
226 0 1 3 A> 314
+ 240 14 1 3 114 A>
241 15 1 3 115 B>
242 14 1 3 115 <B 2
243 13 1 3 114 <A 3 2
+ 257 -1 1 3 <A 315 2
258 0 1 1 A> 315 2
+ 273 15 117 A> 2
274 14 117 <B 1
275 13 116 <A 3 1
+ 291 -3 <A 317 1
292 -2 1 B> 317 1
+ 309 15 1 417 B> 1
310 14 1 417 <A 3
311 15 1 416 3 A> 3
312 16 1 416 3 1 A>
313 17 1 416 3 1 1 B>
314 16 1 416 3 1 1 <B 2
315 15 1 416 3 1 <A 3 2
316 14 1 416 3 <A 3 3 2
317 15 1 416 1 A> 3 3 2
+ 319 17 1 416 13 A> 2
320 16 1 416 13 <B 1
321 15 1 416 1 1 <A 3 1
+ 323 13 1 416 <A 33 1
324 14 1 415 3 A> 33 1
+ 327 17 1 415 3 13 A> 1
328 16 1 415 3 13 <A 3
+ 331 13 1 415 3 <A 34
332 14 1 415 1 A> 34
+ 336 18 1 415 15 A>
337 19 1 415 16 B>
338 18 1 415 16 <B 2
339 17 1 415 15 <A 3 2
+ 344 12 1 415 <A 36 2
345 13 1 414 3 A> 36 2
+ 351 19 1 414 3 16 A> 2
352 18 1 414 3 16 <B 1
353 17 1 414 3 15 <A 3 1
+ 358 12 1 414 3 <A 36 1
359 13 1 414 1 A> 36 1
+ 365 19 1 414 17 A> 1
366 18 1 414 17 <A 3
+ 373 11 1 414 <A 38
374 12 1 413 3 A> 38
+ 382 20 1 413 3 18 A>
383 21 1 413 3 19 B>
384 20 1 413 3 19 <B 2
385 19 1 413 3 18 <A 3 2
+ 393 11 1 413 3 <A 39 2
394 12 1 413 1 A> 39 2
+ 403 21 1 413 110 A> 2
404 20 1 413 110 <B 1
405 19 1 413 19 <A 3 1
+ 414 10 1 413 <A 310 1
415 11 1 412 3 A> 310 1
+ 425 21 1 412 3 110 A> 1
426 20 1 412 3 110 <A 3
+ 436 10 1 412 3 <A 311
437 11 1 412 1 A> 311
+ 448 22 1 412 112 A>
449 23 1 412 113 B>
450 22 1 412 113 <B 2
451 21 1 412 112 <A 3 2
+ 463 9 1 412 <A 313 2
464 10 1 411 3 A> 313 2
+ 477 23 1 411 3 113 A> 2
478 22 1 411 3 113 <B 1
479 21 1 411 3 112 <A 3 1
+ 491 9 1 411 3 <A 313 1
492 10 1 411 1 A> 313 1
+ 505 23 1 411 114 A> 1
506 22 1 411 114 <A 3
+ 520 8 1 411 <A 315
521 9 1 410 3 A> 315
+ 536 24 1 410 3 115 A>
537 25 1 410 3 116 B>
538 24 1 410 3 116 <B 2
539 23 1 410 3 115 <A 3 2
+ 554 8 1 410 3 <A 316 2
555 9 1 410 1 A> 316 2
+ 571 25 1 410 117 A> 2
572 24 1 410 117 <B 1
573 23 1 410 116 <A 3 1
+ 589 7 1 410 <A 317 1
590 8 1 49 3 A> 317 1
+ 607 25 1 49 3 117 A> 1
608 24 1 49 3 117 <A 3
+ 625 7 1 49 3 <A 318
626 8 1 49 1 A> 318
+ 644 26 1 49 119 A>
645 27 1 49 120 B>
646 26 1 49 120 <B 2
647 25 1 49 119 <A 3 2
+ 666 6 1 49 <A 320 2
667 7 1 48 3 A> 320 2
+ 687 27 1 48 3 120 A> 2
688 26 1 48 3 120 <B 1
689 25 1 48 3 119 <A 3 1
+ 708 6 1 48 3 <A 320 1
709 7 1 48 1 A> 320 1
+ 729 27 1 48 121 A> 1
730 26 1 48 121 <A 3
+ 751 5 1 48 <A 322
752 6 1 47 3 A> 322
+ 774 28 1 47 3 122 A>
775 29 1 47 3 123 B>
776 28 1 47 3 123 <B 2
777 27 1 47 3 122 <A 3 2
+ 799 5 1 47 3 <A 323 2
800 6 1 47 1 A> 323 2
+ 823 29 1 47 124 A> 2
824 28 1 47 124 <B 1
825 27 1 47 123 <A 3 1
+ 848 4 1 47 <A 324 1
849 5 1 46 3 A> 324 1
After 849 steps (201 lines): state = A.
Produced 33 nonzeros.
Tape index 5, scanned [-3 .. 29].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 779 | 18 | 365 | 13 | 365 | 18 | 0 | 13 | 11 | 9 | 14 |
| B | 70 | 15 | 29 | 2 | 24 | 1 | 2 | 5 | 4 | ||