2-state 5-symbol TM #a (G. Lafitte & C. Papazian)

Comment: This TM produces 90'604 nonzeros in 8'619'024'596 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3L B1L A1R A3R 1 right B 3 left A 1 left B 1 right A 3 right A
B B2L A3L A3R B4R Z1R 2 left B 3 left A 3 right A 4 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <B 2
     3    -1  <A 3 2
     4     0  1 B> 3 2
     5     1  1 4 B> 2
     6     2  1 4 3 A>
     7     3  1 4 3 1 B>
     8     2  1 4 3 1 <B 2
     9     1  1 4 3 <A 3 2
    10     2  1 4 1 A> 3 2
    11     3  1 4 1 1 A> 2
    12     2  1 4 1 1 <B 1
    13     1  1 4 1 <A 3 1
    14     0  1 4 <A 3 3 1
    15     1  1 3 A> 3 3 1
+   17     3  1 3 1 1 A> 1
    18     2  1 3 1 1 <A 3
+   20     0  1 3 <A 33
    21     1  1 1 A> 33
+   24     4  15 A>
    25     5  16 B>
    26     4  16 <B 2
    27     3  15 <A 3 2
+   32    -2  <A 36 2
    33    -1  1 B> 36 2
+   39     5  1 46 B> 2
    40     6  1 46 3 A>
    41     7  1 46 3 1 B>
    42     6  1 46 3 1 <B 2
    43     5  1 46 3 <A 3 2
    44     6  1 46 1 A> 3 2
    45     7  1 46 1 1 A> 2
    46     6  1 46 1 1 <B 1
    47     5  1 46 1 <A 3 1
    48     4  1 46 <A 3 3 1
    49     5  1 45 3 A> 3 3 1
+   51     7  1 45 3 1 1 A> 1
    52     6  1 45 3 1 1 <A 3
+   54     4  1 45 3 <A 33
    55     5  1 45 1 A> 33
+   58     8  1 45 14 A>
    59     9  1 45 15 B>
    60     8  1 45 15 <B 2
    61     7  1 45 14 <A 3 2
+   65     3  1 45 <A 35 2
    66     4  1 44 3 A> 35 2
+   71     9  1 44 3 15 A> 2
    72     8  1 44 3 15 <B 1
    73     7  1 44 3 14 <A 3 1
+   77     3  1 44 3 <A 35 1
    78     4  1 44 1 A> 35 1
+   83     9  1 44 16 A> 1
    84     8  1 44 16 <A 3
+   90     2  1 44 <A 37
    91     3  1 43 3 A> 37
+   98    10  1 43 3 17 A>
    99    11  1 43 3 18 B>
   100    10  1 43 3 18 <B 2
   101     9  1 43 3 17 <A 3 2
+  108     2  1 43 3 <A 38 2
   109     3  1 43 1 A> 38 2
+  117    11  1 43 19 A> 2
   118    10  1 43 19 <B 1
   119     9  1 43 18 <A 3 1
+  127     1  1 43 <A 39 1
   128     2  1 4 4 3 A> 39 1
+  137    11  1 4 4 3 19 A> 1
   138    10  1 4 4 3 19 <A 3
+  147     1  1 4 4 3 <A 310
   148     2  1 4 4 1 A> 310
+  158    12  1 4 4 111 A>
   159    13  1 4 4 112 B>
   160    12  1 4 4 112 <B 2
   161    11  1 4 4 111 <A 3 2
+  172     0  1 4 4 <A 312 2
   173     1  1 4 3 A> 312 2
+  185    13  1 4 3 112 A> 2
   186    12  1 4 3 112 <B 1
   187    11  1 4 3 111 <A 3 1
+  198     0  1 4 3 <A 312 1
   199     1  1 4 1 A> 312 1
+  211    13  1 4 113 A> 1
   212    12  1 4 113 <A 3
+  225    -1  1 4 <A 314
   226     0  1 3 A> 314
+  240    14  1 3 114 A>
   241    15  1 3 115 B>
   242    14  1 3 115 <B 2
   243    13  1 3 114 <A 3 2
+  257    -1  1 3 <A 315 2
   258     0  1 1 A> 315 2
+  273    15  117 A> 2
   274    14  117 <B 1
   275    13  116 <A 3 1
+  291    -3  <A 317 1
   292    -2  1 B> 317 1
+  309    15  1 417 B> 1
   310    14  1 417 <A 3
   311    15  1 416 3 A> 3
   312    16  1 416 3 1 A>
   313    17  1 416 3 1 1 B>
   314    16  1 416 3 1 1 <B 2
   315    15  1 416 3 1 <A 3 2
   316    14  1 416 3 <A 3 3 2
   317    15  1 416 1 A> 3 3 2
+  319    17  1 416 13 A> 2
   320    16  1 416 13 <B 1
   321    15  1 416 1 1 <A 3 1
+  323    13  1 416 <A 33 1
   324    14  1 415 3 A> 33 1
+  327    17  1 415 3 13 A> 1
   328    16  1 415 3 13 <A 3
+  331    13  1 415 3 <A 34
   332    14  1 415 1 A> 34
+  336    18  1 415 15 A>
   337    19  1 415 16 B>
   338    18  1 415 16 <B 2
   339    17  1 415 15 <A 3 2
+  344    12  1 415 <A 36 2
   345    13  1 414 3 A> 36 2
+  351    19  1 414 3 16 A> 2
   352    18  1 414 3 16 <B 1
   353    17  1 414 3 15 <A 3 1
+  358    12  1 414 3 <A 36 1
   359    13  1 414 1 A> 36 1
+  365    19  1 414 17 A> 1
   366    18  1 414 17 <A 3
+  373    11  1 414 <A 38
   374    12  1 413 3 A> 38
+  382    20  1 413 3 18 A>
   383    21  1 413 3 19 B>
   384    20  1 413 3 19 <B 2
   385    19  1 413 3 18 <A 3 2
+  393    11  1 413 3 <A 39 2
   394    12  1 413 1 A> 39 2
+  403    21  1 413 110 A> 2
   404    20  1 413 110 <B 1
   405    19  1 413 19 <A 3 1
+  414    10  1 413 <A 310 1
   415    11  1 412 3 A> 310 1
+  425    21  1 412 3 110 A> 1
   426    20  1 412 3 110 <A 3
+  436    10  1 412 3 <A 311
   437    11  1 412 1 A> 311
+  448    22  1 412 112 A>
   449    23  1 412 113 B>
   450    22  1 412 113 <B 2
   451    21  1 412 112 <A 3 2
+  463     9  1 412 <A 313 2
   464    10  1 411 3 A> 313 2
+  477    23  1 411 3 113 A> 2
   478    22  1 411 3 113 <B 1
   479    21  1 411 3 112 <A 3 1
+  491     9  1 411 3 <A 313 1
   492    10  1 411 1 A> 313 1
+  505    23  1 411 114 A> 1
   506    22  1 411 114 <A 3
+  520     8  1 411 <A 315
   521     9  1 410 3 A> 315
+  536    24  1 410 3 115 A>
   537    25  1 410 3 116 B>
   538    24  1 410 3 116 <B 2
   539    23  1 410 3 115 <A 3 2
+  554     8  1 410 3 <A 316 2
   555     9  1 410 1 A> 316 2
+  571    25  1 410 117 A> 2
   572    24  1 410 117 <B 1
   573    23  1 410 116 <A 3 1
+  589     7  1 410 <A 317 1
   590     8  1 49 3 A> 317 1
+  607    25  1 49 3 117 A> 1
   608    24  1 49 3 117 <A 3
+  625     7  1 49 3 <A 318
   626     8  1 49 1 A> 318
+  644    26  1 49 119 A>
   645    27  1 49 120 B>
   646    26  1 49 120 <B 2
   647    25  1 49 119 <A 3 2
+  666     6  1 49 <A 320 2
   667     7  1 48 3 A> 320 2
+  687    27  1 48 3 120 A> 2
   688    26  1 48 3 120 <B 1
   689    25  1 48 3 119 <A 3 1
+  708     6  1 48 3 <A 320 1
   709     7  1 48 1 A> 320 1
+  729    27  1 48 121 A> 1
   730    26  1 48 121 <A 3
+  751     5  1 48 <A 322
   752     6  1 47 3 A> 322
+  774    28  1 47 3 122 A>
   775    29  1 47 3 123 B>
   776    28  1 47 3 123 <B 2
   777    27  1 47 3 122 <A 3 2
+  799     5  1 47 3 <A 323 2
   800     6  1 47 1 A> 323 2
+  823    29  1 47 124 A> 2
   824    28  1 47 124 <B 1
   825    27  1 47 123 <A 3 1
+  848     4  1 47 <A 324 1
   849     5  1 46 3 A> 324 1

After 849 steps (201 lines): state = A.
Produced     33 nonzeros.
Tape index 5, scanned [-3 .. 29].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 779 18 365 13 365 18 0 13 11 9 14
B 70 15 29 2 24   1 2 5 4  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:53 CEST 2010