Comment: This has the same score as the (2,4) #a from Ligocki Comment: This TM produces 2050 nonzeros in 3932964 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | C1L | H2R | 1 | right | B | 1 | left | C | 2 | right | H |
| B | A1L | C1L | B2R | 1 | left | A | 1 | left | C | 2 | right | B |
| C | B1R | C2L | C1R | 1 | right | B | 2 | left | C | 1 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 1
3 -1 <C 1 1
4 0 1 B> 1 1
5 -1 1 <C 1 1
6 -2 <C 2 1 1
7 -1 1 B> 2 1 1
8 0 1 2 B> 1 1
9 -1 1 2 <C 1 1
10 0 1 1 C> 1 1
11 -1 1 1 <C 2 1
+ 13 -3 <C 23 1
14 -2 1 B> 23 1
+ 17 1 1 23 B> 1
18 0 1 23 <C 1
19 1 1 2 2 1 C> 1
20 0 1 2 2 1 <C 2
21 -1 1 2 2 <C 2 2
22 0 1 2 1 C> 2 2
+ 24 2 1 2 13 C>
25 3 1 2 14 B>
26 2 1 2 14 <A 1
27 1 1 2 13 <C 1 1
+ 30 -2 1 2 <C 23 1 1
31 -1 1 1 C> 23 1 1
+ 34 2 15 C> 1 1
35 1 15 <C 2 1
+ 40 -4 <C 26 1
41 -3 1 B> 26 1
+ 47 3 1 26 B> 1
48 2 1 26 <C 1
49 3 1 25 1 C> 1
50 2 1 25 1 <C 2
51 1 1 25 <C 2 2
52 2 1 24 1 C> 2 2
+ 54 4 1 24 13 C>
55 5 1 24 14 B>
56 4 1 24 14 <A 1
57 3 1 24 13 <C 1 1
+ 60 0 1 24 <C 23 1 1
61 1 1 23 1 C> 23 1 1
+ 64 4 1 23 14 C> 1 1
65 3 1 23 14 <C 2 1
+ 69 -1 1 23 <C 25 1
70 0 1 2 2 1 C> 25 1
+ 75 5 1 2 2 16 C> 1
76 4 1 2 2 16 <C 2
+ 82 -2 1 2 2 <C 27
83 -1 1 2 1 C> 27
+ 90 6 1 2 18 C>
91 7 1 2 19 B>
92 6 1 2 19 <A 1
93 5 1 2 18 <C 1 1
+ 101 -3 1 2 <C 28 1 1
102 -2 1 1 C> 28 1 1
+ 110 6 110 C> 1 1
111 5 110 <C 2 1
+ 121 -5 <C 211 1
122 -4 1 B> 211 1
+ 133 7 1 211 B> 1
134 6 1 211 <C 1
135 7 1 210 1 C> 1
136 6 1 210 1 <C 2
137 5 1 210 <C 2 2
138 6 1 29 1 C> 2 2
+ 140 8 1 29 13 C>
141 9 1 29 14 B>
142 8 1 29 14 <A 1
143 7 1 29 13 <C 1 1
+ 146 4 1 29 <C 23 1 1
147 5 1 28 1 C> 23 1 1
+ 150 8 1 28 14 C> 1 1
151 7 1 28 14 <C 2 1
+ 155 3 1 28 <C 25 1
156 4 1 27 1 C> 25 1
+ 161 9 1 27 16 C> 1
162 8 1 27 16 <C 2
+ 168 2 1 27 <C 27
169 3 1 26 1 C> 27
+ 176 10 1 26 18 C>
177 11 1 26 19 B>
178 10 1 26 19 <A 1
179 9 1 26 18 <C 1 1
+ 187 1 1 26 <C 28 1 1
188 2 1 25 1 C> 28 1 1
+ 196 10 1 25 19 C> 1 1
197 9 1 25 19 <C 2 1
+ 206 0 1 25 <C 210 1
207 1 1 24 1 C> 210 1
+ 217 11 1 24 111 C> 1
218 10 1 24 111 <C 2
+ 229 -1 1 24 <C 212
230 0 1 23 1 C> 212
+ 242 12 1 23 113 C>
243 13 1 23 114 B>
244 12 1 23 114 <A 1
245 11 1 23 113 <C 1 1
+ 258 -2 1 23 <C 213 1 1
259 -1 1 2 2 1 C> 213 1 1
+ 272 12 1 2 2 114 C> 1 1
273 11 1 2 2 114 <C 2 1
+ 287 -3 1 2 2 <C 215 1
288 -2 1 2 1 C> 215 1
+ 303 13 1 2 116 C> 1
304 12 1 2 116 <C 2
+ 320 -4 1 2 <C 217
321 -3 1 1 C> 217
+ 338 14 119 C>
339 15 120 B>
340 14 120 <A 1
341 13 119 <C 1 1
+ 360 -6 <C 219 1 1
361 -5 1 B> 219 1 1
+ 380 14 1 219 B> 1 1
381 13 1 219 <C 1 1
382 14 1 218 1 C> 1 1
383 13 1 218 1 <C 2 1
384 12 1 218 <C 2 2 1
385 13 1 217 1 C> 2 2 1
+ 387 15 1 217 13 C> 1
388 14 1 217 13 <C 2
+ 391 11 1 217 <C 24
392 12 1 216 1 C> 24
+ 396 16 1 216 15 C>
397 17 1 216 16 B>
398 16 1 216 16 <A 1
399 15 1 216 15 <C 1 1
+ 404 10 1 216 <C 25 1 1
405 11 1 215 1 C> 25 1 1
+ 410 16 1 215 16 C> 1 1
411 15 1 215 16 <C 2 1
+ 417 9 1 215 <C 27 1
418 10 1 214 1 C> 27 1
+ 425 17 1 214 18 C> 1
426 16 1 214 18 <C 2
+ 434 8 1 214 <C 29
435 9 1 213 1 C> 29
+ 444 18 1 213 110 C>
445 19 1 213 111 B>
446 18 1 213 111 <A 1
447 17 1 213 110 <C 1 1
+ 457 7 1 213 <C 210 1 1
458 8 1 212 1 C> 210 1 1
+ 468 18 1 212 111 C> 1 1
469 17 1 212 111 <C 2 1
+ 480 6 1 212 <C 212 1
481 7 1 211 1 C> 212 1
+ 493 19 1 211 113 C> 1
494 18 1 211 113 <C 2
+ 507 5 1 211 <C 214
508 6 1 210 1 C> 214
+ 522 20 1 210 115 C>
523 21 1 210 116 B>
524 20 1 210 116 <A 1
525 19 1 210 115 <C 1 1
+ 540 4 1 210 <C 215 1 1
541 5 1 29 1 C> 215 1 1
+ 556 20 1 29 116 C> 1 1
557 19 1 29 116 <C 2 1
+ 573 3 1 29 <C 217 1
574 4 1 28 1 C> 217 1
+ 591 21 1 28 118 C> 1
592 20 1 28 118 <C 2
+ 610 2 1 28 <C 219
611 3 1 27 1 C> 219
+ 630 22 1 27 120 C>
631 23 1 27 121 B>
632 22 1 27 121 <A 1
633 21 1 27 120 <C 1 1
+ 653 1 1 27 <C 220 1 1
654 2 1 26 1 C> 220 1 1
+ 674 22 1 26 121 C> 1 1
675 21 1 26 121 <C 2 1
+ 696 0 1 26 <C 222 1
697 1 1 25 1 C> 222 1
+ 719 23 1 25 123 C> 1
720 22 1 25 123 <C 2
+ 743 -1 1 25 <C 224
744 0 1 24 1 C> 224
+ 768 24 1 24 125 C>
769 25 1 24 126 B>
770 24 1 24 126 <A 1
771 23 1 24 125 <C 1 1
+ 796 -2 1 24 <C 225 1 1
797 -1 1 23 1 C> 225 1 1
+ 822 24 1 23 126 C> 1 1
823 23 1 23 126 <C 2 1
+ 849 -3 1 23 <C 227 1
850 -2 1 2 2 1 C> 227 1
+ 877 25 1 2 2 128 C> 1
878 24 1 2 2 128 <C 2
+ 906 -4 1 2 2 <C 229
907 -3 1 2 1 C> 229
+ 936 26 1 2 130 C>
937 27 1 2 131 B>
938 26 1 2 131 <A 1
939 25 1 2 130 <C 1 1
+ 969 -5 1 2 <C 230 1 1
970 -4 1 1 C> 230 1 1
+ 1000 26 132 C> 1 1
After 1000 steps (201 lines): state = C.
Produced 34 nonzeros.
Tape index 26, scanned [-6 .. 27].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 15 | 1 | 14 | 0 | 2 | ||
| B | 60 | 14 | 6 | 40 | 1 | 4 | 7 |
| C | 925 | 19 | 453 | 453 | 3 | 5 | 9 |