Comment: A.B.: 2 1 1 0 0 0 3-1 2 3-1 1 2 1 2 2-1 1 1-1 1 2 1 0 1-1 2 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 13949 nonzeros in 92649163 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | Z1= | C2L | 1 | right | B | 1 | stay | Z | 2 | left | C |
B | C1L | B2R | B1L | 1 | left | C | 2 | right | B | 1 | left | B |
C | A1L | B0R | A2L | 1 | left | A | 0 | right | B | 2 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 1 3 1 B> 1 4 2 2 B> 5 1 2 <C 1 6 0 <A 2 1 7 1 1 B> 2 1 8 0 1 <B 1 1 9 1 2 B> 1 1 + 11 3 23 B> 12 2 23 <C 1 13 1 2 2 <A 2 1 14 0 2 <C 2 2 1 15 -1 <A 23 1 16 0 1 B> 23 1 17 -1 1 <B 1 2 2 1 18 0 2 B> 1 2 2 1 19 1 2 2 B> 2 2 1 20 0 2 2 <B 1 2 1 + 22 -2 <B 13 2 1 23 -3 <C 14 2 1 24 -4 <A 15 2 1 25 -3 1 B> 15 2 1 + 30 2 1 25 B> 2 1 31 1 1 25 <B 1 1 + 36 -4 1 <B 17 37 -3 2 B> 17 + 44 4 28 B> 45 3 28 <C 1 46 2 27 <A 2 1 47 1 26 <C 2 2 1 48 0 25 <A 23 1 49 -1 24 <C 24 1 50 -2 23 <A 25 1 51 -3 2 2 <C 26 1 52 -4 2 <A 27 1 53 -5 <C 28 1 54 -6 <A 1 28 1 55 -5 1 B> 1 28 1 56 -4 1 2 B> 28 1 57 -5 1 2 <B 1 27 1 58 -6 1 <B 1 1 27 1 59 -5 2 B> 1 1 27 1 + 61 -3 23 B> 27 1 62 -4 23 <B 1 26 1 + 65 -7 <B 14 26 1 66 -8 <C 15 26 1 67 -9 <A 16 26 1 68 -8 1 B> 16 26 1 + 74 -2 1 26 B> 26 1 75 -3 1 26 <B 1 25 1 + 81 -9 1 <B 17 25 1 82 -8 2 B> 17 25 1 + 89 -1 28 B> 25 1 90 -2 28 <B 1 24 1 + 98 -10 <B 19 24 1 99 -11 <C 110 24 1 100 -12 <A 111 24 1 101 -11 1 B> 111 24 1 + 112 0 1 211 B> 24 1 113 -1 1 211 <B 1 23 1 + 124 -12 1 <B 112 23 1 125 -11 2 B> 112 23 1 + 137 1 213 B> 23 1 138 0 213 <B 1 2 2 1 + 151 -13 <B 114 2 2 1 152 -14 <C 115 2 2 1 153 -15 <A 116 2 2 1 154 -14 1 B> 116 2 2 1 + 170 2 1 216 B> 2 2 1 171 1 1 216 <B 1 2 1 + 187 -15 1 <B 117 2 1 188 -14 2 B> 117 2 1 + 205 3 218 B> 2 1 206 2 218 <B 1 1 + 224 -16 <B 120 225 -17 <C 121 226 -18 <A 122 227 -17 1 B> 122 + 249 5 1 222 B> 250 4 1 222 <C 1 251 3 1 221 <A 2 1 252 2 1 220 <C 2 2 1 253 1 1 219 <A 23 1 254 0 1 218 <C 24 1 255 -1 1 217 <A 25 1 256 -2 1 216 <C 26 1 257 -3 1 215 <A 27 1 258 -4 1 214 <C 28 1 259 -5 1 213 <A 29 1 260 -6 1 212 <C 210 1 261 -7 1 211 <A 211 1 262 -8 1 210 <C 212 1 263 -9 1 29 <A 213 1 264 -10 1 28 <C 214 1 265 -11 1 27 <A 215 1 266 -12 1 26 <C 216 1 267 -13 1 25 <A 217 1 268 -14 1 24 <C 218 1 269 -15 1 23 <A 219 1 270 -16 1 2 2 <C 220 1 271 -17 1 2 <A 221 1 272 -18 1 <C 222 1 273 -17 B> 222 1 274 -18 <B 1 221 1 275 -19 <C 1 1 221 1 276 -20 <A 13 221 1 277 -19 1 B> 13 221 1 + 280 -16 1 23 B> 221 1 281 -17 1 23 <B 1 220 1 + 284 -20 1 <B 14 220 1 285 -19 2 B> 14 220 1 + 289 -15 25 B> 220 1 290 -16 25 <B 1 219 1 + 295 -21 <B 16 219 1 296 -22 <C 17 219 1 297 -23 <A 18 219 1 298 -22 1 B> 18 219 1 + 306 -14 1 28 B> 219 1 307 -15 1 28 <B 1 218 1 + 315 -23 1 <B 19 218 1 316 -22 2 B> 19 218 1 + 325 -13 210 B> 218 1 326 -14 210 <B 1 217 1 + 336 -24 <B 111 217 1 337 -25 <C 112 217 1 338 -26 <A 113 217 1 339 -25 1 B> 113 217 1 + 352 -12 1 213 B> 217 1 353 -13 1 213 <B 1 216 1 + 366 -26 1 <B 114 216 1 367 -25 2 B> 114 216 1 + 381 -11 215 B> 216 1 382 -12 215 <B 1 215 1 + 397 -27 <B 116 215 1 398 -28 <C 117 215 1 399 -29 <A 118 215 1 400 -28 1 B> 118 215 1 + 418 -10 1 218 B> 215 1 419 -11 1 218 <B 1 214 1 + 437 -29 1 <B 119 214 1 438 -28 2 B> 119 214 1 + 457 -9 220 B> 214 1 458 -10 220 <B 1 213 1 + 478 -30 <B 121 213 1 479 -31 <C 122 213 1 480 -32 <A 123 213 1 481 -31 1 B> 123 213 1 + 504 -8 1 223 B> 213 1 505 -9 1 223 <B 1 212 1 + 528 -32 1 <B 124 212 1 529 -31 2 B> 124 212 1 + 553 -7 225 B> 212 1 554 -8 225 <B 1 211 1 + 579 -33 <B 126 211 1 580 -34 <C 127 211 1 581 -35 <A 128 211 1 582 -34 1 B> 128 211 1 + 610 -6 1 228 B> 211 1 611 -7 1 228 <B 1 210 1 + 639 -35 1 <B 129 210 1 640 -34 2 B> 129 210 1 + 669 -5 230 B> 210 1 670 -6 230 <B 1 29 1 + 700 -36 <B 131 29 1 701 -37 <C 132 29 1 702 -38 <A 133 29 1 703 -37 1 B> 133 29 1 + 736 -4 1 233 B> 29 1 737 -5 1 233 <B 1 28 1 + 770 -38 1 <B 134 28 1 771 -37 2 B> 134 28 1 + 805 -3 235 B> 28 1 806 -4 235 <B 1 27 1 + 841 -39 <B 136 27 1 842 -40 <C 137 27 1 843 -41 <A 138 27 1 844 -40 1 B> 138 27 1 + 882 -2 1 238 B> 27 1 883 -3 1 238 <B 1 26 1 + 921 -41 1 <B 139 26 1 922 -40 2 B> 139 26 1 + 961 -1 240 B> 26 1 962 -2 240 <B 1 25 1 + 1002 -42 <B 141 25 1 1003 -43 <C 142 25 1 1004 -44 <A 143 25 1 1005 -43 1 B> 143 25 1 + 1048 0 1 243 B> 25 1 1049 -1 1 243 <B 1 24 1 + 1092 -44 1 <B 144 24 1 1093 -43 2 B> 144 24 1 + 1137 1 245 B> 24 1 1138 0 245 <B 1 23 1 + 1183 -45 <B 146 23 1 1184 -46 <C 147 23 1 1185 -47 <A 148 23 1 1186 -46 1 B> 148 23 1 + 1234 2 1 248 B> 23 1 1235 1 1 248 <B 1 2 2 1 After 1235 steps (201 lines): state = B. Produced 53 nonzeros. Tape index 1, scanned [-47 .. 5].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 35 | 19 | 16 | 0 | 13 | ||
B | 1164 | 20 | 597 | 547 | 1 | 3 | 7 |
C | 36 | 16 | 2 | 18 | 23 | 2 | 5 |