Comment: This TM produces 114,668,733 nonzeros in 9,392,084,729,807,219 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2RA | 1LA | 3LA | 2RA | 1 | right | B | 2 | right | A | 1 | left | A | 3 | left | A | 2 | right | A |
| B | 2LA | 3RB | 4LA | 1LB | 1RH | 2 | left | A | 3 | right | B | 4 | left | A | 1 | left | B | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 2 A> 2
4 0 2 <A 1
5 -1 <A 1 1
6 0 1 B> 1 1
+ 8 2 1 3 3 B>
9 1 1 3 3 <A 2
+ 11 -1 1 <A 3 3 2
12 0 2 A> 3 3 2
13 -1 2 <A 3 3 2
14 -2 <A 1 3 3 2
15 -1 1 B> 1 3 3 2
16 0 1 3 B> 3 3 2
17 -1 1 3 <B 1 3 2
18 -2 1 <B 1 1 3 2
19 -1 3 B> 1 1 3 2
+ 21 1 33 B> 3 2
22 0 33 <B 1 2
+ 25 -3 <B 14 2
26 -4 <A 2 14 2
27 -3 1 B> 2 14 2
28 -4 1 <A 4 14 2
29 -3 2 A> 4 14 2
30 -2 2 2 A> 14 2
+ 34 2 26 A> 2
35 1 26 <A 1
+ 41 -5 <A 17
42 -4 1 B> 17
+ 49 3 1 37 B>
50 2 1 37 <A 2
+ 57 -5 1 <A 37 2
58 -4 2 A> 37 2
59 -5 2 <A 37 2
60 -6 <A 1 37 2
61 -5 1 B> 1 37 2
62 -4 1 3 B> 37 2
63 -5 1 3 <B 1 36 2
64 -6 1 <B 1 1 36 2
65 -5 3 B> 1 1 36 2
+ 67 -3 33 B> 36 2
68 -4 33 <B 1 35 2
+ 71 -7 <B 14 35 2
72 -8 <A 2 14 35 2
73 -7 1 B> 2 14 35 2
74 -8 1 <A 4 14 35 2
75 -7 2 A> 4 14 35 2
76 -6 2 2 A> 14 35 2
+ 80 -2 26 A> 35 2
81 -3 26 <A 35 2
+ 87 -9 <A 16 35 2
88 -8 1 B> 16 35 2
+ 94 -2 1 36 B> 35 2
95 -3 1 36 <B 1 34 2
+ 101 -9 1 <B 17 34 2
102 -8 3 B> 17 34 2
+ 109 -1 38 B> 34 2
110 -2 38 <B 1 33 2
+ 118 -10 <B 19 33 2
119 -11 <A 2 19 33 2
120 -10 1 B> 2 19 33 2
121 -11 1 <A 4 19 33 2
122 -10 2 A> 4 19 33 2
123 -9 2 2 A> 19 33 2
+ 132 0 211 A> 33 2
133 -1 211 <A 33 2
+ 144 -12 <A 111 33 2
145 -11 1 B> 111 33 2
+ 156 0 1 311 B> 33 2
157 -1 1 311 <B 1 3 3 2
+ 168 -12 1 <B 112 3 3 2
169 -11 3 B> 112 3 3 2
+ 181 1 313 B> 3 3 2
182 0 313 <B 1 3 2
+ 195 -13 <B 114 3 2
196 -14 <A 2 114 3 2
197 -13 1 B> 2 114 3 2
198 -14 1 <A 4 114 3 2
199 -13 2 A> 4 114 3 2
200 -12 2 2 A> 114 3 2
+ 214 2 216 A> 3 2
215 1 216 <A 3 2
+ 231 -15 <A 116 3 2
232 -14 1 B> 116 3 2
+ 248 2 1 316 B> 3 2
249 1 1 316 <B 1 2
+ 265 -15 1 <B 117 2
266 -14 3 B> 117 2
+ 283 3 318 B> 2
284 2 318 <A 4
+ 302 -16 <A 318 4
303 -15 1 B> 318 4
304 -16 1 <B 1 317 4
305 -15 3 B> 1 317 4
306 -14 3 3 B> 317 4
307 -15 3 3 <B 1 316 4
+ 309 -17 <B 13 316 4
310 -18 <A 2 13 316 4
311 -17 1 B> 2 13 316 4
312 -18 1 <A 4 13 316 4
313 -17 2 A> 4 13 316 4
314 -16 2 2 A> 13 316 4
+ 317 -13 25 A> 316 4
318 -14 25 <A 316 4
+ 323 -19 <A 15 316 4
324 -18 1 B> 15 316 4
+ 329 -13 1 35 B> 316 4
330 -14 1 35 <B 1 315 4
+ 335 -19 1 <B 16 315 4
336 -18 3 B> 16 315 4
+ 342 -12 37 B> 315 4
343 -13 37 <B 1 314 4
+ 350 -20 <B 18 314 4
351 -21 <A 2 18 314 4
352 -20 1 B> 2 18 314 4
353 -21 1 <A 4 18 314 4
354 -20 2 A> 4 18 314 4
355 -19 2 2 A> 18 314 4
+ 363 -11 210 A> 314 4
364 -12 210 <A 314 4
+ 374 -22 <A 110 314 4
375 -21 1 B> 110 314 4
+ 385 -11 1 310 B> 314 4
386 -12 1 310 <B 1 313 4
+ 396 -22 1 <B 111 313 4
397 -21 3 B> 111 313 4
+ 408 -10 312 B> 313 4
409 -11 312 <B 1 312 4
+ 421 -23 <B 113 312 4
422 -24 <A 2 113 312 4
423 -23 1 B> 2 113 312 4
424 -24 1 <A 4 113 312 4
425 -23 2 A> 4 113 312 4
426 -22 2 2 A> 113 312 4
+ 439 -9 215 A> 312 4
440 -10 215 <A 312 4
+ 455 -25 <A 115 312 4
456 -24 1 B> 115 312 4
+ 471 -9 1 315 B> 312 4
472 -10 1 315 <B 1 311 4
+ 487 -25 1 <B 116 311 4
488 -24 3 B> 116 311 4
+ 504 -8 317 B> 311 4
505 -9 317 <B 1 310 4
+ 522 -26 <B 118 310 4
523 -27 <A 2 118 310 4
524 -26 1 B> 2 118 310 4
525 -27 1 <A 4 118 310 4
526 -26 2 A> 4 118 310 4
527 -25 2 2 A> 118 310 4
+ 545 -7 220 A> 310 4
546 -8 220 <A 310 4
+ 566 -28 <A 120 310 4
567 -27 1 B> 120 310 4
+ 587 -7 1 320 B> 310 4
588 -8 1 320 <B 1 39 4
+ 608 -28 1 <B 121 39 4
609 -27 3 B> 121 39 4
+ 630 -6 322 B> 39 4
631 -7 322 <B 1 38 4
+ 653 -29 <B 123 38 4
654 -30 <A 2 123 38 4
655 -29 1 B> 2 123 38 4
656 -30 1 <A 4 123 38 4
657 -29 2 A> 4 123 38 4
658 -28 2 2 A> 123 38 4
+ 681 -5 225 A> 38 4
682 -6 225 <A 38 4
+ 707 -31 <A 125 38 4
708 -30 1 B> 125 38 4
+ 733 -5 1 325 B> 38 4
734 -6 1 325 <B 1 37 4
+ 759 -31 1 <B 126 37 4
760 -30 3 B> 126 37 4
+ 786 -4 327 B> 37 4
787 -5 327 <B 1 36 4
+ 814 -32 <B 128 36 4
815 -33 <A 2 128 36 4
816 -32 1 B> 2 128 36 4
817 -33 1 <A 4 128 36 4
818 -32 2 A> 4 128 36 4
819 -31 2 2 A> 128 36 4
+ 847 -3 230 A> 36 4
848 -4 230 <A 36 4
+ 878 -34 <A 130 36 4
879 -33 1 B> 130 36 4
+ 909 -3 1 330 B> 36 4
910 -4 1 330 <B 1 35 4
+ 940 -34 1 <B 131 35 4
941 -33 3 B> 131 35 4
+ 972 -2 332 B> 35 4
973 -3 332 <B 1 34 4
+ 1005 -35 <B 133 34 4
1006 -36 <A 2 133 34 4
1007 -35 1 B> 2 133 34 4
1008 -36 1 <A 4 133 34 4
1009 -35 2 A> 4 133 34 4
1010 -34 2 2 A> 133 34 4
+ 1043 -1 235 A> 34 4
1044 -2 235 <A 34 4
After 1044 steps (201 lines): state = A.
Produced 40 nonzeros.
Tape index -2, scanned [-36 .. 3].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 396 | 26 | 171 | 149 | 39 | 11 | 0 | 2 | 3 | 9 | 29 |
| B | 648 | 14 | 313 | 12 | 309 | 1 | 6 | 27 | 16 | ||